Мосты переменного тока

Как мы видели из схем постоянного тока, схемы, известные как мостовые могут быть очень полезны при изменении сопротивлений. Это так же верно и для схем переменного тока, и те же самые принципы могут быть применены для точных измерений неизвестных импедансов.

Напомним, что мостовые схемы работают как пара двухкомпонентных делителей напряжения подсоединённых параллельно к источнику напряжения, индикатор нулевого сигнала включён в диагональ моста для определения "баланса" при нулевом сигнале (Рисунок внизу)

Сбалансированный мост показывает ноль, или минимальное значение, на индикаторе

Сбалансированный мост показывает "ноль", или минимальное значение, на индикаторе.

Любой из четырёх резисторов на верхнем рисунке может быть резистором с неизвестным сопротивлением, и его значение может быть определено из пропорции с другими тремя резисторами, которые "калиброваны" или их сопротивления известны с высокой точностью. Когда мост находится в условиях баланса (индикатор показывает нулевой сигнал), отношение определяется как:

Уравнение условий баланса.

Условия баланса.

Одним из преимуществ использования мостовой схемы для измерения сопротивлений является то, что напряжение источника питания не влияет на измерения. Практически, чем выше напряжение питания, тем легче обнаружить дисбаланс между четыремя резисторами с помощью индикатора нулевого сигнала, и таким образом повышается чувствительность схемы. Большее напряжение питания ведёт к увеличению точности измерений. Однако из-за уменьшения или увеличения напряжения питания не вносится фундаментальных ошибок в отличии от других схем измерения сопротивлений.

Импедансные мосты работают так же, только уравнение баланса определяется комплексными числами, и амплитуда, и фаза сигналов на диагонали моста должны быть равные, что бы детектор показал "нуль". Детектор нуля, конечно, должен быть устройством, способным обнаруживать очень слабый сигнал переменного тока. Для этого часто используют осциллограф, хотя здесь мог бы использоваться очень чувствительный электромеханический прибор и даже наушники, если частота сигнала лежит в звуковом диапазоне.

Один из способов увеличить эффективность наушников как детектора нуля - подсоединить их к источнику сигнала через согласующий трансформатор. Обычно наушники имеют низкое сопротивление (8 Ω), требующее существенного тока для работы, и такой понижающий трансформатор помогает "согласовать" слаботочный сигнал с сопротивлением наушников. Для этих целей хорошо подходит выходной трансформатор от аудио аппаратуры. (Рисунок внизу)

согласующий трансформатор для низкоомных наушников.

Детектор нуля для мостов переменного тока на основе наушников.
"Современные" низкоомные головные телефоны требуют согласующий трансформатор при использовании их в качестве чувствительного детектора нулевого сигнала.

Используя пару головных телефонов, полностью закрывающих уши, я мог обнаруживать сигналы с током менее 0.1 µA с этим простым детектором. Похожие результаты были получены с использованием двух понижающих трансформаторов: небольшого силового трансформатора (120В/6В), и аудио выходного трансформатора (с отношением сопротивлений обмоток 1000:8 Ом). С кнопочным выключателем для прерывания тока эта схема пригодна для обнаружения сигналов в диапазоне от постоянного тока до частот более 2 мГц: даже если частота гораздо больше или меньше звукового диапазона, в наушниках будут слышны щелчки каждый раз при нажатии или отпускании кнопки.

Соединённая в резистивный мост, полная схема изображена на нижнем рисунок.

Мост переменного тока с чувствительным детектором нуля.

Мост переменного тока с чувствительным детектором нуля.

Слушая сигнал в наушниках в то время как один или более резисторов в "плечах" моста отрегулированы, ожидают наступления баланса тогда, когда в наушниках перестанут быть слышны щелчки (или звуковой сигнал, если частота источника сигнала лежит в звуковом диапазоне).

Когда описывают общие мосты переменного тока, где импеданс, а не только сопротивления должны иметь правильные соотношения для выполнения условий баланса, иногда бывает полезно рисовать соответствующие узлы моста в виде квадратов, каждый из которых имеет определённый импеданс: (Рисунок внизу)

Обобщённый мост переменного тока.

Обобщённый мост переменного тока: Z = общий комплексный импеданс.

Для этого обобщённого моста переменного тока выполнение условий баланса должно происходить в том случае, когда отношение импедансов каждой ветви равно:

Уравнение импедансов.

Снова должно быть подчёркнуто, что импеданс в этом уравнении должен быть комплексный, рассчитанный для как для амплитуды, так и для фазы. Недостаточно, что бы мост был сбалансирован только по амплитуде сигнала; без балансировки фазы на выводах детектора нуля будет присутствовать напряжение, и мост не будет сбалансирован.

Мостовые схемы могут быть сконструированы для измерений почти любых параметров - ёмкости, индуктивности, сопротивления и даже добротности. Как и всегда в мостовых измерительных схемах, неизвестное значение всегда "балансируется" по известному стандарту, полученному из высококачественного, калиброванного компонента, значение с которого считывается при индикации на детекторе нуля баланса. В зависимости от того, как устроен мост, значение неизвестного компонента может быть получено с калиброванного элемента как напрямую, так и рассчитано по формуле.

Несколько простых мостовых схем показано ниже, одна для измерения индуктивности (Рисунок внизу), другая - для измерения ёмкости (Рисунок внизу):

Симметричный мост измеряет неизвестную индуктивность путём сравнения её со стандартной.

Симметричный мост измеряет неизвестную индуктивность путём сравнения её со стандартной.

Симметричный мост измеряет неизвестную ёмкость путём сравнения её со стандартной.

Симметричный мост измеряет неизвестную ёмкость путём сравнения её со стандартной.

Простые "симметричные" мосты, такие как эти названы так потому что они выглядят симметрично (зеркальная симметрия) слева направо. Две мостовые схемы, показанные вверху балансируются путём регулирования калиброванных реактивных элементов (Ls или Cs). Они немного упрощены по сравнению с их реальными схемами, например, на практике мост имеет калиброванный переменный резистор, соединённый последовательно или параллельно с реактивным компонентом для балансирования побочного сопротивления в измеряемом элементе. Но в гипотетическом мире совершенных компонент эти простые мостовые схемы прекрасно подходят для иллюстрации основной концепции.

Пример схемы с небольшим усложнением, добавленным для компенсации реальных неидеальностей может быть найден в так называемом Мосте Вина (Wien bridge), который использует параллельно соединённые стандартные конденсатор и резистор для балансировки неизвестного последовательного внутреннего сопротивления измеряемого конденсатора. (Рисунок внизу). Все конденсаторы имеют некоторое внутреннее сопротивление, активное или эквивалентное (из-за потерь в диэлектрике), которое портит их совершенную реактивную природу. Определение внутреннего сопротивления может являться интересным для измерений, так что мост Вина даёт это сделать путём балансирования составного импеданса:

Мост Вина измеряет ёмкость и сопротивление реального конденсатора

Мост Вина измеряет ёмкость Cx и сопротивление Rx "реального" конденсатора.

Из-за того, что необходимо регулировать два компонента (резистор и конденсатор), этот мост требует чуть больше времени для балансировки, чем ранее рассмотренные. Комбинированный эффект от Rs и Cs выражается в том, что необходимо регулировать амплитуду и фазу до тех пор, пока мост не сбалансируется. Сбалансировав мост, значения Rs и Cs могут быть считаны с их калиброванных шкал, параллельный импеданс вычисляется математически, и неизвестные ёмкость и сопротивление вычисляются из уравнения баланса (Z1/Z2 = Z3/Z4).

При работе с мостом Вина предполагается, что стандартный конденсатор имеет пренебрежительно малое внутреннее сопротивление, или хотя бы это сопротивление известно, так что его значение можно использовать в уравнении баланса моста. Мосты Вина полезны для определения тока утечки электролитических конденсаторов, в которых внутреннее сопротивление относительно велико. Они так же могут быть использованы как частотомеры, так как балансировка моста зависит от частоты. В этом случае конденсатор используется постоянный, верхние по схеме два резистора - переменные и их настройка производится одной ручкой (т.е. резисторы - сдвоенные).

Интересная вариация этой темы находится в следующей мостовой схеме, используемой для точного измерения индуктивностей.

Мост Максвелла - Вина измеряет индуктивность по ёмкостному стандарту.

Мост Максвелла - Вина измеряет индуктивность по ёмкостному стандарту.

Эта остроумная мостовая схема известна как мост Максвелла - Вина (иногда её называют мост Максвелла ), она используется для измерения неизвестных индуктивностей с помощью калиброванных резистора и конденсатора (Рисунок вверху). Калиброванные катушки гораздо труднее производить, чем конденсаторы такой же точности, и таким образом применение "симметричного" индуктивного моста не всегда оправдано. Из-за того, что сдвиги фаз на индуктивностях и ёмкостях в точности противоположны друг другу, ёмкостный импеданс может скомпенсировать индуктивный импеданс, если они находятся в противоположных плечах моста, как в данном случае.

Другим преимуществом моста Максвелла для измерения индуктивностей по сравнению с симметричным мостом является то, что устраняются ошибки измерения из-за взаимодействия между двумя индуктивностями. Магнитные поля бывает трудно экранировать, и даже небольшая связь между катушками в мосте может вызвать при некоторых условиях существенные ошибки. Без второй индуктивности в мосте Максвелла эта проблема устраняется.

Для облегчения регулировок, стандартный конденсатор (Cs) и резистор, соединённый с ним в параллель (Rs) сделаны переменными, и они оба должны быть отрегулированы для получения баланса. Однако мост может быть сбалансирован и в том случае, если используется конденсатор постоянной ёмкости и более чем один резистор сделан переменным. Но в этом случае мост сбалансировать гораздо труднее, так как разные переменные резисторы взаимодействуют при балансировки амплитуды и фазы.

В отличии от чистого моста Вина, баланс моста Максвелла-Вина независим от частоты источника питающего сигнала, и в некоторых случаях этот мост может быть сбалансирован при наличии смеси частот в источнике питания переменного тока, при этом ограничивающим фактором является стабильность индуктивности в широком диапазоне частот.

Существует большое количество подобных схем, но их обсуждение здесь неуместно. Выпускаемые импедансные мосты общего назначения могут иметь более одной конфигурации для максимальной гибкости в использовании.

Потенциальной проблемой в чувствительных мостах переменного тока является паразитная ёмкость между выводами детектора нуля и землёй. Так как ёмкость может проводить переменный ток, заряжаясь и разряжаясь, то образовываются паразитные токи, которые проходят к источнику питания, что может влиять на баланс моста: (Рисунок внизу)

Паразитная ёмкость с землёй может быть причиной ошибки.

Паразитная ёмкость с землёй может быть причиной ошибки в мосте.

Существующие измерители частоты язычкового типа не точны, но точны их принципы работы. Вместо механического резонанса мы можем использовать электрический резонанс и сконструировать частотомер, используя индуктивность и ёмкость, соединённые в колебательный контур (индуктивность и ёмкость соединены параллельно). Один или более компонентов сделаны регулируемыми, и измеритель установлен в схему для индикации максимального напряжения, проходящего через эти два компонента. Ручки настройки калиброваны, что бы показывать резонансную частоту при любых заданных настройках, и частота считывается с них после регулировки по максимальному отклонению индикатора. По существу это настраиваемая фильтровая схема, которая регулируется и затем показания считываются похожим образом как и у мостовой схемы (которую мы балансируем по "нулевому" сигналу и затем считываем показания). Проблема усугубляется, если источник переменного тока хорошо заземлён на одном конце, то общее сопротивление токов утечки становится гораздо меньше, и любые токи утечки через эти паразитные ёмкости в результате возрастают: (Рисунок внизу)

Ошибки из-за паразитной ёмкости

Ошибки из-за паразитной ёмкости более сильны, если один вывод источника переменного тока заземлён.

Один из способов существенного понижения этого эффекта - держать детектор нуля под потенциалом земли, что бы между ним и землёй не образовывалось токов через ёмкости утечки. Однако напрямую соединить детектор нуля с землёй невозможно, так как это создаст прямой путь токам утечки, что станет ещё хуже ёмкостных токов утечек. Вместо этого может быть использован схема делителя напряжения, называемая землёй Вагнера или заземлением Вагнера, которая поддерживает детектор нуля на уровне потенциала земли и которой не нужно прямое соединения с ним. (Рисунок внизу)

Земля Вагнера для источника питания переменного тока

Земля Вагнера для источника питания переменного тока минимизирует влияние паразитных ёмкостей на землю.

Схема земли Вагнера не более чем делитель напряжения, созданный для получения отношений напряжения и сдвига фазы такими же, как и на каждой стороне моста. Из-за того, что средняя точка делителя Вагнера напрямую заземлена, любые другие схемы делителей (включая каждую сторону моста) имеют те же самые отношения напряжений и фаз, что и делитель Вагнера и питаются от общего источника переменного тока, и все они находятся под потенциалом земли. Таким образом, делитель Вагнера вынуждает детектор нуля находиться вблизи потенциала земли, без прямого соединения между детектором и землёй.

Часто возникает необходимость в проверке режима правильности настройки схемы земли Вагнера. Для этого используется двухпозиционный переключатель (Рисунок внизу), соединённый так что один вывод детектора нуля может быть подключён как к мосту, так и к земле Вагнера. Когда детектор нуля фиксирует нулевой сигнал в обоих положениях переключателя, то мост не только гарантированно сбалансирован, но и детектор нуля гарантированно находится под нулевым потенциалом, что устраняет ошибки, возникающие из-за токов утечки через ёмкости детектор нуля - земля:

Настройка земли Вагнера.

Переключение в верхнее по схеме положении даёт возможность настроить землю Вагнера.

BACK MAIN PAGE

Рейтинг@Mail.ru