УКВ ЧМ радиоприёмник "Фремодин"

В 60-х годах прошлого века в журнале "Электроника Австралии" была опубликована схема четырёхлампового приёмника-фремодина. Это был простой связной УКВ приёмник, ставший очень популярным. Основой схемы послужил "Фремодин" - простой сверхрегенеративный приёмник, описание которого было опубликовано в мае 1948 года в журнале по электронике "Новости радио" в США. Чуть позже в журнале "Электроника Австралии" появилась схема этого приёмника на транзисторах.

Однако изначально Фремодин был разработан Американской корпорацией "Хэйзелтайн" как недорогой ЧМ радиоприёмник ещё в 1947 году, задолго до того, как журнал "Электроника Австралии" опубликовала свою схему. Эта схема была по существу копией схемы корпорации "Хэйзелтайн" за исключением того, что были добавлены дополнительные сменные катушки, при использовании которых приёмник мог принимать частоты 30...250 мГц.

Название приёмника "Фремодин" произошло от слов frequency modulation и суффикса dyne, обычно традиционно добавляемого к названиям различных схем. Собственно название приёмника подчёркивает то что он предназначен для приёма частотной модуляции (FM). По-русски название звучало бы как "Часмодин" или "Частмодин"

Вопреки распространённому мнению, что для приёма ЧМ необходим сложный многоламповый супергетеродин со множеством резонансных контуров, для приёма УКВ ЧМ станций можно использовать даже простейший детекторный приёмник, но для этого сигнал принимаемой радиостанции должен быть достаточно сильным. При таком приёме используется обычный АМ детектор, резонансный контур которого настраивается так, что бы принимаемая ЧМ радиостанция оказалась на склоне АЧХ контура, при этом частотная модуляция будет преобразовываться в амплитудную. Поскольку в этом случае резонансный контур точно не настроен на частоту принимаемого сигнала, то и чувствительность такого приёмника будет понижена.

Для приёма ЧМ можно так же применить регенеративный детектор. Но в данном случае при увеличении уровня регенерации происходит сужение полосы пропускания приёмника, что приводит к увеличению искажений. Следовательно в этом типе приёмников нельзя применить максимально возможное усиление сигнала. Тем не менее проведённые эксперименты показали, что регенеративные детекторы способны высококачественно принимать ЧМ сигналы.

Кроме того, на УКВ регулировать уровень регенерации очень сложно, поэтому такими регенеративными приёмниками могут пользоваться радиолюбители, а для простых технически неподкованных людей эти конструкции не подходят. По этой причине сверхрегенеративные схемы используют там, где требуются простые схемные решения. Они обеспечивают хорошую чувствительность, высокий уровень выходного сигнала и широкую полосу пропускания. Этими приёмниками могут пользоваться и технически неподкованные люди.

Что бы объяснить принцип работы суперрегенеративных детекторов, необходимо понимать принцип работы обычных регенераторов, в которых положительная обратная связь используется для увеличения усиления детектора. Суперрегенератор, изобретённый в 1922 году Эдвином Армстронгом является модернизацией обычного регенератора.

Если рассмотреть обычный регенератор, то при увеличении уровня регенерации для получения максимальной чувствительности, если проскочить чуть выше критической точки, то принимаемый сигнал будет заглушён биениями, так что его нельзя будет услышать. Но если изменять уровень регенерации периодически, проскакивая точку возникновения генерации, то при ультразвуковой частоте её изменения биения не будут слышны. Эта частота называется частотой гашения и она обычно лежит в диапазоне 20...100 кГц. Существует оптимальное отношение частоты гашения к частоте принимаемого сигнала, которое составляет 1/1000 от частоты несущей. Чем ниже частота гашения, тем выше напряжение на выходе суперрегенератора, но хуже качество воспроизводимого сигнала. Качество звука возрастает с увеличением частоты гашения, но при этом падает селективность.

Потенциально правильно сконструированный сверхрегенеративный приёмник обладает очень высокой чувствительностью, которая позволяет детектировать сигналы величиной несколько микровольт, и широкой полосой пропускания, типичная величина которой составляет 200 кГц. Поскольку детектор находится в режиме генерации, то он является источником помех на частоте приёма. Если это является проблемой, то детектор следует экранировать и установить перед ним высокочастотный усилитель для предотвращения проникновения сигнала детектора в антенну.

Гашение может быть выполнено как с использованием внешнего генератора гашения, так и добавлением к ВЧ генератору времязадающей цепи, которая вводит генератор в режим самогашения. Схема с самогашением является простой и позволяет отказаться от применения дополнительного усилительного элемента. Тем не менее использование внешнего генератора гашения делает управление частотой гашения и её формой более удобным, что позволяет улучшить параметры приёмника.

можно объяснить принцип работы сверхрегенеративного детектора упрощённо: входной сигнал модулирует сигнал детектора, что в свою очередь приводит к изменению тока анода. Предположим, что входной сигнал отсутствует. Тогда супер регенератор будет работать как обычный ВЧ генератор, частота которого периодически гасится. В этом случае ток анода будет постоянным. Если теперь на вход детектора подать ВЧ сигнал, то генерация возникнет чуть раньше, так как сначала входной сигнал активизирует генератор, которому не надо будет дожидаться появления импульса гашения для запуска. Теперь детектор находится в периоде генерации более долгое время, что увеличивает анодный ток, следовательно пульсации анодного тока будут являться аудиосигналом.

Так как детектор периодически находится в режиме генерации, то радиоприём не происходит непрерывно. Работа сверхрегенератора напоминает работу устройства выборки и хранения. Это означает, что выходной сигнал необходимо пропустить через НЧ фильтр, что бы отфильтровать частоту гашения и заполнить паузы между выборками, аналогично тому, как это делается в цифро-аналоговых преобразователях.

Регенеративный детектор маловосприимчив к шумам, так как импульсы шумов будут игнорироваться в то время, когда детектор находится в режиме отсечки при действии на него гасящей частоты. Кроме того, суперрегенеративный детектор работает в логарифмическом режиме, что обеспечивает хорошую АРУ. На чувствительность, качество воспроизводимого звука и ширину полосы пропускания сверхрегенеративного приёмника сильно влияет форма сигнала частоты гашения. В неудачных конструкциях обычно на это не обращают достаточно внимания.

Любой ВЧ генератор можно превратить в сверхрегенеративный детектор, если его периодически гасить с ультразвуковой частотой и фильтровать потребляемый генератором ток для получения аудиосигнала. Сверхрегенераторы могут работать даже в микроволновом диапазоне.

Тот факт, что сверхрегенераторы хорошо подходят для приёма сигналов УКВ диапазона и у них имеется относительно широкая полоса пропускания, позволяет их применить для приёма широкополосной частотной модуляции. Детектирование ЧМ происходит при настройке приёмника не точно на несущую частоту радиостанции а так, что бы она оказалась на линейном участке склона АЧХ резонансного контура. В этом случае происходит преобразование частотной модуляции в амплитудную. При отклонении частоты входного сигнала в одну строну выходное напряжение будет увеличиваться, в другую сторону - уменьшаться. Такое детектирование называется детектированием на склоне частотной характеристики. После преобразования в АМ в сигнале сохраняются ЧМ компоненты, но они игнорируются.

Из истории суперрегенеративного приёма

В 1940-х годах были проведены большие исследования в области сверхрегенеративных радиоприёмников, направленные на то, что бы сделать из нестабильных и непредсказуемых конструкций стабильные воспроизводимые аппараты, пригодные для использования в военных целях, а именно в приёмниках системы запроса "свой-чужой" и в простых носимых радиостанциях. Многие из этих исследований были проведены корпорацией "Хэйзелтайн", запатентовавшей несколько изобретений, относящихся к сверхрегенеративным приёмникам. Радиолюбители широко использовали сверхрегенеративные приёмники на УКВ диапазонах, так как в то время супергетеродинные приёмники были слишком сложны и имели невысокие параметры.

Хотя в наши дни суперрегенеративные приёмники выглядят как примитивные устройства, излучающие помехи, но в начале 1950-х годов они был очень популярным средством для радиоприёма на УКВ диапазонах. В конце 1950-х годов снова ненадолго возник к ним интерес в связи с открытием в США диапазона 27 мГц, и в дальнейшем их вытеснили другие схемы. Тем не менее суперрегенеративные приёмники всё ещё используются в дешёвых рациях и в системах радиоуправления.

Когда в конце 1940-х появилось ЧМ радиовещание на УКВ диапазоне, суперрегенеративные приёмники возродились как недорогое и простое средство для приёма УКВ ЧМ радиостанций. Но у них было два недостатка, которые надо было ликвидировать что бы сверхрегенераторы можно было бы использовать в массово производимых ЧМ приёмниках, которыми могли бы пользоваться технически неподкованные люди. В обычных регенеративных приёмниках регенерация должна регулироваться каждый раз, когда приёмник настраивается на другую радиостанцию или когда применяется другая антенна, это необходимо для того, что бы схема работала при оптимальных условиях. Для многих технически неподкованных людей эти регулировки всегда были сложными. Вторая проблема была связана с ВЧ излучением. Поскольку сверхрегенеративный приёмник всегда находится в режиме генерации, то он действует как маломощный передатчик, излучая сигнал на частоте приёма. Наличие нескольких таких приёмников обычно не являются проблемой, но наличие тысяч таких приёмников, работающих поблизости друг от друга, может затруднить радиоприём.

Развитие ЧМ в Германии

С введением ЧМ вещания на УКВ диапазоне стали нужны недорогие радиоприёмники для приёма частотной модуляции. Во многих недорогих моделях использовалась суперрегенеративные схемы, в которых перед суперрегенеративным каскадом включался каскад УВЧ для снижения уровня излучения через антенну.

В некоторых ЧМ конвертерах/адаптерах использовались широко распространённые в то время ВЧ лампы типа ЕФ42 и аналогичные. Существовали специально разработанные для применения в таких адаптерах лампы, например, ЕСФ12 производства компании "Телефункен". В этой лампе пентодная часть использовалась в каскаде УВЧ, а на триоде был собран сверхрегенеративный детектор. Лампа была значительно укорочена, она имела не только металлический корпус, но к ней ещё прикручивался латунный экран, который экранировал гнездо, в которое лампа ЕСФ12 вставлялась. В таких схемах можно было не использовать регулировку регенерации, так как настройка осуществлялась вариометром (в катушку вдвигался/выдвигался сердечник), что давало довольно стабильные параметры по всему диапазону настройки. Такие приёмники предназначались для приёма сигналов только местных радиостанций. Среди выпускавшихся моделей сверхрегенеративных тюнеров были известны ЧМ тюнеры Филипс 7455 и Телефункен УКВ1Ц, которые в виде отдельного модуля устанавливались в обычные АМ приёмники.

Шагом в перёд по сравнению с суперрегенеративными приёмниками для ЧМ были обычные АМ супергетеродинные приёмники, которые использовались для приёма ДВ, СВ и КВ волн, но в них были добавлены коммутируемые УКВ контуры во входных цепях и в гетеродине. В этом случае в УПЧ добавлялись резонансные контуры, настроенные на частоту 10,7 мГц и включённые последовательно с контурами на 470 кГц, так что УПЧ мог работать на двух частотах. Такая концепция двухчастотного УПЧ использовалась и при переходе на транзисторную элементарную базу.

Детектором в таких приёмниках служил простой АМ детектор, ЧМ на него принималась на склоне АЧХ резонансного контура. Такой приёмник не содержал каких-либо дополнительных ламп, но в нём было в два раза больше резонансных контуров в УПЧ и две УКВ катушки во входной цепи и в гетеродине. Эти приёмники выпускались многими фирмами, в том числе фирмами Телефункен и Грюндиг. В дальнейшем по мере снижения цен на приёмники стали использовать детектор отношений для улучшения качества воспроизводимого сигнала. Так же стали применять отдельный ВЧ преобразователь частоты.

Развитие ЧМ в США

Хотя жители США находились в гораздо более лучшем экономическом состоянии, чем жители Германии, тем не менее на Американском рынке присутствовали простые и недорогие ЧМ радиоприёмники, так как применение дорогих и громоздких десятиламповых супергетеродинов было не всегда оправдано. Первые приёмники для ЧМ сигналов были более сложными, чем обычные пятиламповые АМ супергетеродины. Система ЧМ вещания была разработана для того, что бы осуществлять высококачественное радиовещание без помех и шумов, присущих АМ вещанию на средних волнах.

Кроме резонансного ВЧ каскада, ЧМ приёмники имели по крайней мере два каскада УПЧ, за которыми устанавливался один (иногда два) амплитудный ограничитель и затем каскад частотного дискриминатора. УЗЧ обычно имел большую мощность и широкую полосу пропускания.

В США недорогие ЧМ радиоприёмники прошли несколько иной путь развития. Здесь так же использовались суперрегенераторы, но в комбинации с супергетеродинной схемой. При фиксированной промежуточной частоте ширина полосы пропускания и чувствительность регенеративного каскада будут постоянными при перестройке по всему диапазону, так что не нужно будет постоянно регулировать регенерацию и пользователям нужно будет только крутить ручку настройки. Излучение регенератора будет ограничено и его частота будет находиться вне УКВ диапазона.

В результате исследований, проведённых во время войны, в 1947 году корпорация "Хэйзелтайн" создала Фремодин - недорогой ЧМ приёмник. Это был УКВ сверхрегенеративный супергетеродин, основу которого составлял двойной триод 12АТ7. Фремодин стал последним в числе нескольких предыдущих конструкций суперрегенеративных супергетеродинов, запатентованных корпорацией. Существовали улучшенные варианты Фремодина, но постепенно интерес к этой схеме падал и больше приёмники такого типа не выпускались.

Фремодинные приёмники выпускались двух видов: в виде конвертера для подключения к аудиовходу электрофона или АМ приёмника, а так же в виде УКВ блока в АМ/ЧМ приёмнике.

Первый Фремодин сошёл с конвейера в конце 1947 года и эта модель оставалась популярной около трёх лет.

Обзор схемы Фремодина

Несмотря на кажущуюся простоту сверхрегенеративного детектора, принцип работы такой схемы довольно сложен. Что бы пояснить принцип его работы, рассмотрим следующую схему (Рис. 1).

Принципиальная схема Фремодинного ЧМ радиоприёмника

Рис. 1. Схема Фремодинного УКВ ЧМ радиоприёмника.

На нижнем триоде VL1.2 собран обычный генератор Колпитца, рабочая частота которого на 21,75 мГц выше или ниже частоты принимаемого сигнала. В этом генераторе используются схема с плавающим катодом, где паразитные ёмкости катод-сетка и катод-земля используются в качестве ёмкостей обратной связи, анод заземлён по высокой частоте конденсатором ёмкостью 500 пФ. В такой схеме генератора используется катушка без отводов. Естественно, что здесь можно применить и любые другие схемы генераторов.

На триоде VL1.1 собран суперрегенеративный детектор, работающий на частоте 21,75 мГц. Если на этот детектор подать частоты, лежащие в УКВ диапазоне 88..108 мГц, то естественно они не будут приниматься. Но если на вход детектора подать ещё и сигнал от гетеродина, частота которого будет отличаться от частоты УКВ сигнала на 21,75 мГц, то в этом случае удастся принять сигналы УКВ радиостанций, так как из-за нелинейности триода произойдёт сложение или вычитание сигналов УКВ и гетеродина и выделение ПЧ сигнала частотой 21,75 мГц.

Иначе говоря, триод VL1.1 работает как обычный супергетеродинный преобразователь частоты, а сверхрегенератор - как УПЧ и детектор. Поскольку сверхрегенератор предназначен для приёма АМ сигналов, то приём ЧМ сигналов осуществляется при настройке сверхрегенератора на линейный участок ската АЧХ резонансного контура. Настраиваться можно на любой склон АЧХ, что иногда помогает отстроиться от близлежащих по частоте помех. Таким способом ЧМ сигнал можно принимать на любой АМ приёмник, но качество приёма будет зависеть от формы АЧХ контура и от величины девиации ЧМ сигнала. Если такой ЧМ детектор правильно выполнить, то приём будет таким же качественным, как и при использовании специального частотного детектора.

В такой схеме будет работать любой сверхрегенеративный приёмник, настроенный на частоту 21,75 мГц, но в схеме сверхрегенератора производства корпорации "Хэйзелтайн" форма и период гасящей частоты была выбрана такой, что бы обеспечить необходимую селективность для приёма широкополосной частотной модуляции, а так же в схеме была применена автоматическая стабилизация режима работы регенеративного каскада, что позволило детектору работать при отклонениях питающего напряжения Uпит и при сильных входных сигналах, не прибегая к какой-либо регулировке, поэтому в этой схеме отсутствует регулировка регенерации. Обычно у суперрегенеративных схем при существенных отклонениях питающего напряжения ухудшаются параметры, но эта схема обеспечивает более стабильные параметры по сравнению с другими аналогичными схемами.

Качество воспроизводимого звука этим приёмником получается лучше, чем у супергетеродинного ЧМ приёмника с детектированием на склоне АЧХ контура. Для питания можно было использовать бестрансформаторную схему блока питания, так как постоянное напряжение 100 вольт легко получалось из переменного напряжения сети 120 вольт, используемого в США.

Подробное описание работы схемы

Для работы сверхрегенеративного приёмника необходимо следующее:
1. Резонансный контур, настроенный на требуемую частоту;
2. Положительная обратная связь, при введении которой в схеме возникли бы высокочастотные колебания на частоте настройки резонансного контура;
3. Схема гашения, периодически гасящая высокочастотные колебания;
4. Аудиовыход;
5. Управление регенерацией для обеспечения оптимального режима работы сверхрегенератора.

В Фремодине используется детектор, настроенный на частоту 21,75 мГц. Этот детектор более сложен, чем обычные сверхрегенеративные детекторы с самогашением, и принцип работы некоторых его деталей не очевиден. Принцип его работы, описанный во многих источниках, является довольно туманным, когда дело качается отдельных компонент, а иногда и вовсе не правильным.

Резонансная цепь сверхрегенеративного детектора

Резонансная цепь сверхрегенеративного детектора состоит из катушки индуктивности L2 с ферритовым подстроечником, и двух конденсаторов по 30 пФ, соединённых последовательно, что даёт общую ёмкость 15 пФ, подключённую параллельно L2. При этом резонансная частота этого контура составляет 21,75 мГц. Хотя последовательно с обоими конденсаторами по 30 пФ включён конденсатор ёмкостью 5 нФ, он не влияет на резонансную цепь и его можно рассматривать как короткозамкнутую цепь для рабочей частоты 21,75 мГц регенеративного каскада. Такое значение ПЧ - 21,75 мГц выбрано для того, что бы на ЧМ диапазон не попадали гармоники частоты, на которой работает сверхрегенеративный детектор. Например, если бы рабочей частотой была выбрана частота 33 мГц, то её третья гармоника (99 мГц) попала бы на частоту УКВ диапазона. При использовании частоты 21,75 мГц её четвёртая и пятая гармоники находятся вне границ УКВ диапазона (21,75*4=87 мГц, 21,75*5=108,75 мГц). Можно было выбрать и какую-нибудь другую частоту, например 27.5 мГц. Чем выше рабочая частота сверхрегенеративного детектора, тем выше может быть частота гашения и следовательно выше качество звука. Резистор номиналом 15 кОм, подключённый параллельно катушке индуктивности L2 предназначен для того, что бы колебания быстрее затухали при действии гасящей частоты.

Цепь положительной обратной связи

Эта цепь сформирована дросселем в катодной цепи лампы VL1.1, блокирующим частоты, начинающиеся с 21,75 мГц. Катод лампы подсоединён с точкой соединения двух конденсаторов по 30 пФ, что образует генератор Колпитца. Что бы понять, почему в этом генераторе возникают колебания, проигнорируем нижний по схеме конденсатор ёмкостью 30 пФ и предположим, что сетка лампы заземлена по ВЧ. Верхний по схеме конденсатор ёмкостью 30 пФ, включённый между анодом и катодом, образует цепь обратной связи, так как при включении лампы по схеме с общей сеткой лампа работает как неинвертирующий усилитель. При увеличении напряжения на аноде будет расти и напряжение на катоде. Это приводит к снижению анодного тока, так как напряжение сетка-катод становится более отрицательным. Это приводит к увеличению скорости роста анодного напряжения, оно увеличивается до тех пор, пока триод не войдёт в насыщение, и дальше цикл снова повторится.

Узел управления частотой гашения

Во Фремодине используется сверхрегенератор с самогашением, это значит, что в схеме имеется времязадающая цепь с относительно большим значением постоянной времени, эта цепь вводит и выводит генератор в режим генерации с частотой гашения. времязадающая цепь может находиться в цепи сетки, анода или катода лампы, как это сделано в схеме Фремодина. Здесь резистор сопротивлением 1,5 кОм и конденсатор ёмкостью 2,5 нФ образуют низкочастотную (относительно частот УКВ) времязадающую цепь. Что бы пояснить принцип работы этого узла, будем считать, что конденсатор ёмкостью 2,5 нФ и резистор сопротивлением 1,5 кОм соединены параллельно (конденсатор ёмкостью 10 мкФ для частоты гашения имеет очень низкое реактивное сопротивление, так что его можно рассматривать как короткозамкнутую цепь). Если напряжение на катоде генератора становится более положительным, то это эквивалентно тому, что напряжение на сетке стало бы отрицательным. Так как напряжение на сетке управляет током анода, то очевидно, что сила колебаний регулируется напряжением на катоде, и если это напряжение становится слишком высоким, то триод перейдёт в режим отсечки и генерация прекратится.

Падение напряжения на резисторе сопротивлением 1,5 кОм вполне достаточно для того, что бы ввести триод в режим отсечки. Однако включённый параллельно этому резистору конденсатор ёмкостью 2,5 нФ в начальный момент времени не заряжен и имеет практически нулевое сопротивление, так что триод пока не находится в режиме отсечки и генерация продолжается. По мере заряда конденсатора током катода падение напряжения на конденсаторе увеличивается и в конце концов становится настолько большим, что триод переходит в режим отсечки и генерация прекращается. Теперь ток через анод (и следовательно через катод) прекращает течь, и конденсатор разряжается через резистор сопротивлением 1,5 кОм, возвращая триод в режим генерации. Параметры этой RC цепочки были подобраны такими, что бы селективная характеристика была линейна по обоим сторонам от резонансной частоты 21,75 мГц контура ПЧ, что позволяет осуществить качественную демодуляцию частотно-модулированных сигналов на склонах амплитудно-частотной характеристики этого контура.

Цикл повторяется с частотой, определяемой RC цепью, примерное значение частоты гашения определяется по формуле F=1/(R*C). В приёмнике "Фремодин" производства корпорации "Хэйзелтайн" была применена частота гашения 30 кГц. Эта частота должна быть хотя бы в два раза больше частоты самых высоких воспроизводимых звуковых частот, но с увеличением частоты гашения снижается чувствительность приёмника.

Аудиовыход

Аудио сигнал можно получить после фильтрования напряжения с сетки, анода или катода. В схеме Фремодина сигнал звуковой частоты снимается с резистора сопротивлением 22 кОм, установленного в цепи катода, и далее аудиосигнал через НЧ фильтр, образованный резистором 100 кОм и конденсатором 1 нФ подаётся на выход приёмника. Значение постоянной времени этого фильтра выбрано не совсем корректно, тем не менее схема обеспечивает коррекцию предыскажений. Фильтрация аудиосигнала необходима для предотвращения попадания частоты гашения на последующий усилитель низкой частоты. Если это не сделать, то усилитель будет перегружен сигналом ультразвуковой частоты и его выходная мощность уменьшится. Для получения достаточной выходной мощности обычно хватает двухлампового УНЧ.

Стабилизация сеточной цепи

Основными компонентами, ответственными за стабилизацию сеточной цепи лампы VL1.1 являются конденсатор ёмкостью 10 мкФ и резистор сопротивлением 150 кОм. Должно быть понятно, что ток протекает через сетку к катоду тогда, когда на сетке присутствует положительное напряжение. Это обычный режим работы генератора. Из-за того, что участок сетка - катод работает как диод, напряжение на сетке становится более отрицательным относительно катода, и на сетке устанавливается отрицательное напряжение смещения.

Как было упомянуто ранее, напряжение на сетке управляет амплитудой колебаний генератора. В большинстве правильно сконструированных схемах сверхрегенеративных приёмников имеется регулировка уровня амплитуды колебаний генератора, с её помощью обеспечиваются наилучший режим работы сверхрегенератора. Эта регулировка применяется потому, что параметры генератора могут изменяться при изменении питающего напряжения или уровня входного сигнала, который может меняться при использовании разных антенн. Кроме того, амплитуда принимаемого сигнала может быть разной на краях рабочего диапазона частот, сильные сигналы могут лучше приниматься при одном режиме генератора, чем слабые и т.д. Так же схема должна быть хорошо повторяемой, её работа не должна зависеть от разброса параметров компонент и старения триода.

В схеме Фремодина регулировка регенерации осуществляется автоматически, что упрощает работу приёмника и позволяет им пользоваться неквалифицированным пользователям.

Для того, что бы понять, как эта автоматическая регулировка работает, представим, что резистор сопротивлением 150 кОм отсутствует в схеме. Триод работает, генерация присутствует и таким образом на сетке устанавливается отрицательное напряжение, заряжающее два блокировочных конденсатора номиналами 5 нФ и 2,5 нФ. Конденсатор ёмкостью 10 нФ так же заряжается, и поскольку он имеет большую ёмкость, три остальные конденсатора малой ёмкости (5 нФ, 5 нФ и 2,5 нФ) можно проигнорировать. Обратите внимание, что отрицательный вывод конденсатора 10 мкФ через дроссель подключён к сетке лампы. Чем больше амплитуда колебаний генератора (амплитуда растёт, например, из-за увеличения величины напряжения питания), тем больше будет величина отрицательного напряжения на выводах конденсатора 10 мкФ. Конденсатор будет продолжать заряжаться, что приведёт к уменьшению амплитуды колебаний генератора, и в конце концов триод перейдёт в режим отсечки и приёмник перестанет работать. Вот где понадобится резистор сопротивлением 150 кОм. Так как резистора подключён к источнику питания 100 вольт, то он будет противодействовать слишком глубокому отрицательному заряду и конденсатора 10 мкФ сеточным током лампы. Изменяя значение сопротивления 150 кОм, можно регулировать степень стабилизации. Постоянная времени RC цепи стабилизации определяется параметрами резистора 150 кОм и конденсатора 10 мкФ и она вполне достаточна для того, что бы самые низшие частоты модуляции не снижали усиления приёмника, и следовательно напряжения звуковой частоты на его выходе. Так как величина частоты гашения частично зависит от напряжения на сетке, то резистор 150 кОм может быть использован для тонкой настройки частоты гашения, что бы убрать биения от пилот-тона частотой 19 кГц. Раньше такой проблемы не было, так как стереовещание ещё не началось, а сейчас это необходимо учитывать при приёме сигналов FM диапазона.

Входная ВЧ резонансная цепь

Сигнал с антенны через конденсатор ёмкостью 2 пФ подаётся входной резонансный контур и с него на сетку триода VL1.1. Так же на эту сетку подаётся сигнал гетеродина через другой конденсатор ёмкостью 2 пФ. Частота сигнала гетеродина всегда выше частоты принимаемого сигнала на 21,75 мГц. Перестройка по диапазону осуществляется сдвоенным конденсатором переменной ёмкости, который одновременно изменяет частоту входной цепи и частоту частотозадающей цепи гетеродина на лампе VL1.2. Из-за нелинейной работы триода VL1.1 оба сигнала смешиваются, и результирующая разностная частота выделяется на аноде лампы VL1.1, нагрузкой которого является контур промежуточной частоты, состоящий из индуктивности L2 и двух последовательно соединённых конденсаторов ёмкостью по 30 пФ. Для предотвращения возможного самовозбуждения последовательно с дросселем в цепи сетки лампы VL1.1 иногда включают сопротивление величиной 10 Ом.

Узел гетеродина

В этом приёмнике можно вообще обойтись без гетеродина, если использовать гармоники сверхрегенеративного детектора. Предположим, рабочая частота детектора составляет 30 мГц, тогда четвёртая гармоника будет иметь частоту 120 мГц, следовательно приёмник будет настроен на частоту 120-30=90 мГц. Аналогично и для других частот, если, например, настроить детектор на частоту 33 мГц, то четвёртая гармоника будет равно 132 мГц, что обеспечит приём сигналов радиостанции, лежащей на частоте 132-33=99 мГц.

Высокочастотные дроссели

Дроссель в цепи катода лампы VL1.1 для частоты 21,75 мГц содержит 100 витков медного эмалированного провода диаметром 0,13 мм намотанного на каркасе диаметром 5,5 мм. Дроссель в сеточной цепи этой лампы такой же, только у него увеличено количество витков - 120. Ориентировочная индуктивность обоих дросселей - около 17 мкГн и 14 мкГн, их значения не критичны.

BACK MAIN PAGE