Измерительный мост, позволяющий определять величину неизвестного электрического сопротивления, был изобретён британским учёным Самуэлом Кристи в 1833 году, и позже модернизирован и популяризирован другим британским учёным, Чарьзом Витстоном в 1843 году.
Схема измерительного моста Уинстона.
P1 - P3 - диагональ питания; P2 - P4 - измерительная диагональ моста;
R1, R2 - левое плечо, R3, Rx - правое плечо моста.
Принцип измерения неизвестного сопротивления основан на уравнивании отношений сопротивлений в обоих плечах моста, при этом гальванометр, включённый между этими плечами, будет показывать нулевое напряжение. На рисунке Rx - это неизвестное сопротивление, которое требуется измерить. R1, R2 и R3 - резисторы с известными значениями сопротивлений, причём резистор R2 переменный. Если отношение двух известных сопротивлений в плече R2/R1 равно отношению сопротивлений в плече Rx/R3, то в этом случае напряжение между точками схемы P2 и P4 будет равно нулю, и через гальванометр V ток не будет течь. Если же мост разбалансирован, то отклонение гальванометра будут указывать на то, что сопротивление резистора R2 слишком большое или слишком маленькое. Переменный резистор R2 регулируют до тех пор, пока гальванометр не укажет на ноль.
По гальванометру можно определять отсутствие тока в цепи с очень большой точностью. Следовательно, если резисторы R1, R2 и R3 - высокоточные, то неизвестное сопротивление Rx может быть измерено с большой точностью. Небольшие изменения сопротивления Rx разбалансируют измерительный мост, что обнаруживается по показанию гальванометра.
При сбалансированном мосте выполняется равенство R2/R1 = Rx/R3.
Отсюда Rx = R3*R2 / R1
В случае если сопротивления R1, R2 и R3 известны, а резистор R2 - постоянный, то неизвестное сопротивление Rx может быть рассчитано с помощью законов Кирхгофа. Этот метод измерения часто используется при применении измерительного моста в тензометрии, совместно с тензодатчиком, так как считать показания с гальванометра получится гораздо быстрее, чем балансировать мост переменным резистором.
Используя первый закон Кирхгофа, найдём токи, протекающие в узлах P2 и P4:
I3 - Ix + IG = 0
I1 - I2 - IG = 0
Далее с помощью второго закона Кирхгофа найдём напряжения в контурах P1-P2-P4 и P2-P3-P4:
(I3 * R3) - (IG * RG) - (I1 * R1) = 0
(Ix * Rx) - (I2 * R2) + (IG * RG) = 0
Мост сбалансирован, следовательно IG = 0, так что вторая система уравнений сократится:
I3 * R3 = I1 * R1
Ix * Rx = I2 * R2
Решая эту систему уравнений, получим:
Rx = R2 * I2 * I3 * R3 / (R1 * I1 * Ix)
Из первого закона Кирхгофа следует, что I3 = Ix и I1 = I2. Следовательно величина неизвестного сопротивления Rx будет определятся по формуле:
Rx = R3*R2/R1
Если известны сопротивления всех четырёх резисторов и величина питающего напряжения Uпит, а сопротивление гальванометра достаточно высокое, так что током IG, протекающим через него можно пренебречь, то напряжение U между точками моста P2 и P4 может быть найдено путём расчёта каждого из делителей напряжения, вычтя затем напряжение на одном делителе из напряжения на другом делителе. В этом случае получится следующее уравнение:
U = Rx * Uпит / (R3 + Rx) - R2 * Uпит / (R1 + R2)
Напряжение питания Uпит можно вынести за скобки, в этом случае получится выражение:
U = (Rx / (R3 + Rx) - R2 / (R1 + R2)) * Uпит
Где U - напряжение в точке P2 относительно точки P4.
Измерительный мост Уинстона иллюстрирует концепцию дифференциальных измерений, результаты которых могут быть очень точными. Различные разновидности моста Уинстона используются для измерения ёмкости, индуктивности, импеданса и других величин. Одной из разновидностей моста является мост Кельвина, специально предназначенный для измерения малых сопротивлений. Во многих случаях измерение величины неизвестного сопротивления связано с измерением некоторых физических параметров, таких как сила, температура, давление и т.д., здесь в качестве измеряемого сопротивления используется соответствующий резистивный датчик.
В 1865 году Джеймс Максвелл применил измерительный мост Уинстона, питаемый переменным током, для измерения индуктивности, и в 1926 году Алан Блюмлейн подверг этот мост усовершенствованию.
Мост Уинстона является основной схемой измерительных мостов, но так же существуют различные его модификации, с помощью которых можно проводить измерения различных типов сопротивлений, когда основная схема моста для этого не подходит. Вот несколько разновидностей основной схемы измерительного моста: