Генераторы гармонических сигналов на операционных усилителях

1. Введение

Генераторами являются такие схемы, которые производят периодические колебания различных форм, например, прямоугольные, треугольные, пилообразные и синусоидальные. В генераторах обычно применяются различные активные компоненты, лампы или кварцевые резонаторы, а так же пассивные - резисторы, конденсаторы, индуктивности.

Существует два основных класса генераторов - релаксационные и гармонические. Релаксационные генераторы производят треугольные, пилообразные и другие несинусоидальные сигналы, и в этой статье они не рассматриваются. Синусоидальные генераторы состоят из усилителей со внешними компонентами, или же компоненты могут быть смонтированы на одном кристалле с усилителем. В этой статье рассматриваются генераторы гармонических сигналов, созданные на основе операционных усилителей.

Генераторы гармонического сигнала применяются в качестве образцовых или испытательных генераторов во многих схемах. В чистом синусоидальном сигнале присутствует только основная частота - в идеале в нём нет никаких других гармоник. Таким образом, подавая синусоидальный сигнал на вход какого-нибудь устройства, можно измерить уровень гармоник на его выходе, определив таким образом коэффициент нелинейных искажений. В релаксационных генераторах выходной сигнал формируется из синусоидального сигнала, который суммируется для формирования колебаний специальной формы.

2. Что такое генератор синусоидального сигнала

Генераторы на операционных усилителях являются нестабильными схемами - не в том смысле, что они случайно получились нестабильными - а наоборот, их специально конструируют так, что бы они оставались в нестабильном состоянии или в состоянии генерации. Генераторы бывают полезны для генерации стандартных сигналов, используемых как образцовые для применения в областях, связанных с аудио, в качестве функциональных генераторов, в цифровых системах и в системах связи.

Существуют два основных класса генераторов: синусоидальные и релаксационные. Синусоидальные состоят из усилителей с RC или LC цепями, с помощью которых можно менять частоту генерации, или кварцев с фиксированной частотой. Релаксационные генераторы генерируют колебания треугольной, пилообразной, прямоугольной, импульсной или экспоненциальной формы и здесь не рассматриваются.

Генераторы синусоидального сигнала работают без подачи на них внешнего сигнала. Вместо этого применяется комбинация положительной или отрицательной обратной связи, что бы перевести усилитель в нестабильное состояние, что приводит к цикличному изменению сигнала на выходе от минимального до максимального напряжения питания с постоянным периодом. Частота и амплитуда колебаний определяется набором активных и пассивных компонентов, подключённых к операционному усилителю.

Генераторы на операционных усилителях ограничены низкочастотным диапазоном частотного спектра, так как у них отсутствует широкая полоса пропускания, необходимая для достижения низкого фазового сдвига на высоких частотах. Операционные усилители с обратной связью по напряжению ограничены килогерцовым частотным диапазоном, так как доминирующий полюс при разомкнутой цепи обратной связи может находиться на достаточно низкой частоте, например 10 Гц. Новые операционные усилители с токовой связью имеют гораздо большую полосу пропускания, но их очень трудно использовать в генераторных схемах потому что они чувствительны к ёмкостям в цепях обратной связи. Генераторы с кварцевыми резонаторами используются для применения в высокочастотных схемах в диапазоне до сотен мГц.

3. Условия для возникновения генерации

Для демонстрации условий возникновения колебаний используется классическое изображение системы с отрицательной обратной связью. На рисунке 1 изображена блочная схема этой системы, где VIN - напряжение входного сигнала, VOUT - напряжение на выходе блока усилителя (A), β - сигнал, называемый коэффициентом обратной связи, который подаётся обратно на сумматор. E представляет ошибку, равную сумме коэффициента обратной связи и входного напряжения.

система с обратной связью

Рисунок 1. Классическая форма изображения системы с положительной или отрицательной обратной связью.

Соответствующие классические выражения для системы обратной связи выводятся следующим образом. Уравнение (1) является определяющим уравнением для выходного напряжения; уравнение (2) - для соответствующей ошибки:

VOUT = E x A (1)
E = VIN - βVOUT (2)

Выразив первое уравнение через E и подставив его во второе, получим

VOUT/A = VIN - βVOUT (3)

группируя VOUT в одной части равенства, получим

VIN = VOUT(1/A + β) (4)

Переставляя местами члены равенства, получим уравнение (5), классическую форму описания обратной связи:

VOUT/VIN = A / (1 + Aβ) (5)

Генераторы не требуют никакого внешнего сигнала для своей работы, вместо этого они используют некоторую часть выходного сигнала, подаваемого обратно на вход через цепь обратной связи.

Колебания в генераторах возникают от того, что системе обратной связи не удаётся найти стабильное состояние, потому что условие передаточной функции не может быть выполнено. Система становится неустойчивой, когда знаменатель в уравнении (5) обращается в нуль, т.е. когда 1 + Aβ = 0, или Aβ = -1. Ключом к созданию генератора является выполнение условия Aβ = -1. Это так называемый критерий Баркгаузена. Для удовлетворения этого критерия необходимо, что бы величина усиления цепи обратной связи совпадала по фазе с соответствующим фазовым сдвигом, равным 180°, на что указывает знак "минус". Эквивалентное выражение с использованием символики комплексной алгебры будет Aβ =1∠-180° для отрицательной системы обратной связи. Для положительной системы обратной связи выражение будет выглядеть как Aβ =1∠-0° и знак слагаемого Aβ в уравнении (5) будет отрицательным.

По мере того, как сдвиг фаз приближается к 180°, и |Aβ| --> 1, выходное напряжение теперь уже неустойчивой системы стремится к бесконечности, но оно, конечно же, ограничено конечными значениями из-за ограничения напряжения источника питания. Когда амплитуда выходного напряжения достигает величины какого-либо из питающих напряжений, то активные устройства в усилителях изменяют коэффициент усиления. Это приводит к тому, что величина A изменяется, и так же приводит к удалению Aβ от бесконечности и, таким образом траектория изменения напряжения в направлении бесконечности замедляется и в конце концов останавливается. На данном этапе может произойти одно из трёх событий:

I. нелинейности в режиме насыщения или отсечки приводят систему в устойчивое состояние и удерживают выходное напряжение вблизи напряжения источника питания.
II. Начальные изменения приводят систему в режим насыщение (или в режим отсечки) и система остаётся в этом состоянии долгое время, прежде чем она становится линейной и выходное напряжение начинает изменяться по направлению к противоположному источнику питания.
III. Система остаётся линейной и меняет направление изменения выходного напряжения в сторону к противоположному источнику питания.

Второй вариант даёт сильно искажённые колебания (как правило, почти прямоугольной формы), такие генераторы называют релаксационными. Третий вариант производит синусоидальный сигнал.

4. Сдвиг фаз в генераторах

В уравнении Aβ =1∠-180° фазовый сдвиг, равный 180°, вносят активные и пассивные компоненты. Как и любые правильно сконструированные схемы с обратной связью, генераторы зависят от фазового сдвига, вносимого пассивными компонентами, потому что этот фазовый сдвиг точный и почти без дрейфа. Фазовый сдвиг, вносимый активными компонентами сведён к минимуму, поскольку он зависит от температуры, имеет широкий начальный допуск, и зависит от типов активных элементов. Усилители подобраны таким образом, что бы они вносили минимальный фазовый сдвиг или вообще не вносили никакого фазового сдвига на частоте колебаний. Эти факторы ограничивают рабочий диапазон генераторов на операционных усилителях относительно низкими частотами.

Однозвенные RL или RC цепи вносят фазовый сдвиг величиной до 90° (но не точно 90° - их фазовый сдвиг стремится к 90°, но никогда их не достигнет) на звено, и так как для возникновения колебаний необходим фазовый сдвиг 180°, то нужно использовать хотя бы два звена в конструкции генератора (так как максимальный фазовый сдвиг будет стремиться к 180°, то необходимое дополнение фазового сдвига до точного значения 180° будет обеспечиваться входными ёмкостями и сопротивлениями активных элементов). LC цепь имеет два полюса, и может вносить фазовый сдвиг по 180° на полюс. Но LC и LR генераторы здесь не рассматриваются, так как низкочастотные индуктивности дороги, тяжелы, громоздки и сильно неидеальны. LC генераторы применяются в высокочастотных схемах, за пределами частотного диапазона операционных усилителей, там где размер, вес и цена индуктивностей менее важны.

Сдвиг по фазе определяет рабочую частоту генерации, поскольку схема будет генерировать колебания на любой частоте, на которой накапливается фазовый сдвиг в 180°. Чувствительность фазы к частоте, dφ/dω, определяет стабильность частоты. Когда буферированные RC звенья (буфер на операционном усилителе обеспечивает высокое входное и низкое выходное сопротивление) включены каскадно, то фазовый сдвиг умножается на количество звеньев, n (см. Рисунок 2).

Сдвиг фаз RC звеньями

Рис. 2. Сдвиг фаз RC звеньями.

В той области, где фазовый сдвиг равен 180°, частота генерации очень чувствительна к сдвигу фазы. Таким образом, из-за жёстких требований к частоте необходимо, чтобы фазовый сдвиг dφ, изменялся в чрезвычайно узких пределах, что бы изменения частоты dφ были бы незначительными при фазовом сдвиге, равном 180°. Из рисунка 2 видно, что хотя два последовательно соединённых RC звена в конечном итоге обеспечивают фазовый сдвиг почти 180°, величина dφ/dω на частоте генерации недопустимо мала. Следовательно, генератор на основе двух последовательно соединённых RC цепей будет иметь плохую стабильность частоты. Три одинаковых RC фильтра, включённых последовательно, имеют гораздо большее отношение dφ/dω (см. Рисунок 2), что даёт в результате улучшение стабильности частоты генератора. Добавление четвёртого RC звена позволяет создать генератор с превосходным отношением dφ/dω (см. Рисунок 2), таким образом, это даёт наиболее стабильную по частоте схему RC генератора. Четырёхзвенные RC цепи содержат максимальное число звеньев, которое используют, потому что в одном корпусе микросхемы содержится четыре ОУ, и четырёхкаскадный генератор даёт четыре синусоиды, сдвинутые по фазе друг относительно друга на 45°. Этот же генератор может быть использован для получения синусоидальных/косинусоидальных, а так же квадратурных (т.е. с разницей 90°) сигналов.

Кварцевые или керамические резонаторы позволяют создавать гораздо более стабильные генераторы, так как у резонаторов отношение dφ/dω гораздо выше из-за их нелинейных свойств. Резонаторы применяют в высокочастотных схемах, в низкочастотных схемах резонаторы не используют из-за их больших размеров, веса и стоимости. Операционные усилители обычно не используют совместно с кварцевыми или керамическими резонаторами, так как ОУ имеют низкую полосу пропускания. Опыт показывает, что вместо использования низкочастотных резонаторов для низких частот является более экономически эффективным способ, когда используется высокочастотный кварцевый генератор, выходную частоту которого следует поделить в n раз до необходимой рабочей частоты, а затем отфильтровать выходной сигнал.

5. Усиление генератора

Усиление генератора должно быть равно единице (Aβ =1∠-180°) на рабочей частоте. При нормальных условиях схема становится устойчивой в случае, когда усиление превышает единицу, и тогда генерация прекращается. Однако если усиление превышает единицу и фазовый сдвиг составляет при этом -180°, то нелинейность активных элементов понижает усиление до единицы, и генерация продолжается. Эта нелинейность становится важной в случае, если выходное напряжение усилителя приближается по величине к одному из питающих напряжений, так как в режиме отсечки или насыщения снижается усиление активных элементов (транзисторов). Парадокс здесь в том, что для технологичности на всякий случай закладывают усиление, превышающее единицу, хотя чрезмерное усиление приводит к увеличению искажения синусоидального сигнала.

Когда усиление слишком низкое, то условия ухудшаются и колебания прекращаются, а когда усиление слишком большое, то форма выходного сигнала становится больше похожа на меандр, чем на синусоиду. Искажения являются прямым результатом чрезмерного увеличения усиления, перегружающего усилитель; следовательно, усиление должно контролироваться очень тщательно в генераторах с низким коэффициентом искажениями. В генераторах на основе фазосдвигающих цепей тоже имеются искажения, но они снижаются на выходе из-за того, что последовательно соединённые RC цепи работают как RC фильтры, уменьшающие искажения. Кроме того, буферированные генераторы на фазосдвигающих цепях имеют низкий уровень искажений, поскольку усиление контролируется и распределяется между буферами.

Большинство схем требуют вспомогательной цепи для регулировки усиления, если нужно получить сигнал с малыми искажениями. Во вспомогательных цепях могут использоваться нелинейные компоненты в цепях обратной связи для автоматической регулировки усиления, или ограничители на резисторах и диодах. Необходимо также уделить внимание изменению коэффициента усиления в результате изменений температуры и допусков компонент, и уровень сложности схем определяется исходя из требуемой стабильности коэффициента усиления. Чем более стабилен коэффициент усиления, тем чище будет синусоидальный сигнал на выходе.

6. Влияние активного элемента (ОУ) на генератор

Во всех предыдущих рассуждениях предполагалось, что операционный усилитель имеет бесконечно большую полосу пропускания и его выход частотонезависим. В действительности у ОУ имеется несколько полюсов на АЧХ, но их компенсируют таким образом, что бы над ними доминировал один полюс по всей полосе пропускания. Таким образом, Aβ должна теперь считаться зависимой от частоты в зависимости от усиления A операционного усилителя. Уравнение (6) показывает эту зависимость, здесь a - это максимальное усиление петли обратной связи, ωa - это доминирующий полюс на АЧХ, и ω - частота сигнала. На рисунке 3 изображена зависимость частоты от усиления и фазы. Усиление при замкнутой цепи ОС ACL = 1/β не имеет ни полюсов, ни нулевых значений, оно постоянно при росте частоты до точки, где начинает действовать усиление при разомкнутой цепи ОС на частоте ω3dB. Здесь амплитуда сигнала ослабляется на 3 дБ и фазовый сдвиг, вносимый ОУ составляет 45°. Амплитуда и фаза начинают изменяться на одну декаду вниз от этой точки, 0.1 x ω3dB, и фаза продолжает сдвигаться до тех пор, пока не достигнет величины 90° в точке 10 ω3dB, на декаду ниже точки 3 дБ. Усиление продолжает падать со скоростью –20 dB на декаду до тех пор, пока не достигнет других полюсов или нулевого значения. Чем выше усиление при замкнутой петле ОС, ACL, тем раньше оно начнёт падать.

image (6)

Фазовый сдвиг, вносимый ОУ, влияет на характеристики схемы генератора, за счёт снижения частоты колебаний, а также уменьшение ACL ACL может привести к Aβ < 1, и генерация прекратится.

Амплитудно-частотная характеристика операционного усилителя

Рис. 3. Амплитудно-частотная характеристика операционного усилителя

Большинство ОУ имеют компенсацию и могут иметь фазовый сдвиг больше чем 45° на частоте ω3dB. Таким образом, ОУ должен выбираться с коэффициентом усиления на полосе пропускания по крайней мере одну декаду выше частоты генерации, как показано на заштрихованном участке на рисунке 3. Генератор на мосте Вина требует усиления на полосе пропускания больше чем 43 ωOSC, что бы усиление и частота поддерживалась в пределах 10% от идеального значения [2]. На рисунке 4 приведны сравнительные характеристики искажений на разных частотах для операционных усилителей LM328, TLV247x, и TLC071, которые имеют полосу пропускания 0.4 мГц, 2.8 мГц, and 10 мГц, которые используются в генераторе на мосте Вина с нелинейной обратной связью (см. часть 8.1). Частота колебаний лежит в диапазоне от 16 Гц до 160 кГц. График иллюстрирует важность выбора подходящего ОУ. Усилитель LM328 достигает максимальной частоты генерации 72 кГц при ослаблении усиления больше чем 75%, а TLV247x достигает 125 кГц при снижении усиления на 18%. Широкая полоса пропускания TLC071 обеспечивает частоту генерации 138 кГц при снижении усиления всего на 2%. Операционный усилитель нужно выбирать с подходящей полосой пропускания, иначе частота генерации будет лежать гораздо ниже, чем требуется.

График искажения/частота для ОУ

Рис. 4. График искажения/частота для ОУ с разной шириной полосы пропускания.

Необходимо соблюдать осторожность при использовании резисторов больших номиналов в цепи обратной связи, потому что они взаимодействуют с входной ёмкостью ОУ и создают полюса с отрицательной обратной связью, а так же полюса и нули с положительной обратной связью. Резисторы больших номиналов могут сдвигать эти полюса и нули ближе к частоте генерации и воздействовать на сдвиг фаз [3]. В заключении обратим внимание на ограничение скорости нарастания сигнала ОУ. Скорость нарастания сигнала должна быть больше чем 2πVPf0, где VP - это пиковое напряжение и f0 - частота генерации; в противном случае выходной сигнал будет искажён.

7. Анализ работы схемы генератора

При создании генераторов различными способами комбинируют положительную и отрицательную обратные связи. На рисунке 5,а изображена базовая схема усилителя с отрицательной ОС и с добавленной положительной ОС. Когда применяются и положительная, и отрицательная ОС, то их усиления комбинируются в одно общее (усиление замкнутой петли ОС). Рисунок 5,а упрощается до рисунка 5,б, цепь положительной ОС представлена β = β2, и последующий анализ упрощается. Когда используется отрицательная ОС, то петля положительной ОС игнорируется, так как β2 равна нулю.

Петли положительной и отрицательной О
а. Петли положительной и отрицательной ОС
image
б. Упрощённая схема

Рис. 5. Блочная схема генератора.

Общий вид операционного усилителя с положительной и отрицательной ОС показан на рисунке 6,а. Первым шагом в анализе будет разрывание петли в каком-нибудь месте, но так, что бы усиление схемы не изменилось. Положительная ОС разорвана в точке, помеченной X. Тестовый сигнал VTEST подаётся в разорванную петлю и выходное напряжение VOUT измеряется с помощью эквивалентной схемы, изображённой на рисунке 6,б.

image
а. Оригинальная схема
image
б. Эквивалентная схема расчёта усиления петли ОС

Рис. 6. Усилитель с положительной и отрицательной обратной связью.

В начале рассчитывается V+, используя уравнение (7); затем V+ рассматривается как входной сигнал, подаваемый на неинвертирующий усилитель, что даёт Vout из уравнения (8). Подставляя V+ из уравнения (7) в уравнение (8), получаем в уравнении (9) передаточную функцию. В реальной схеме элементы заменяются для каждого импеданса, и уравнение упрощается. Эти уравнения действительны в случае, если усиление при разомкнутой петле ОС огромно и частота генерации меньше, чем 0.1 ω3dB.

image (7)

image (8)

image (9)

В генераторах на основе сдвига фазы обычно используют отрицательную обратную связь, так что фактор положительной обратной связи (β2) обращается в нуль. В схемах генераторов на основе моста Вина используются и отрицательная (β1) и положительная (β2) обратная связи для достижения режима генерации. Уравнение (9) применяется для детального анализа этой схемы (см. часть 8.1).

8. Схемы генераторов синусоидального сигнала

Существует много типов схем генераторов гармонических сигналов и их модификаций, при практической реализации выбор зависит от частоты и желаемой монотонности выходного сигнала. Основное внимание в этой части будет уделено более известным схемам генераторов: на мосте Вина, на фазовом сдвиге, и квадратурным. Передаточная функция выводится в каждом конкретном случае с помощью методов, описанных в разделе 6 этой статьи, и в ссылках 4, 5 и 6.

8.1. Генератор на основе моста Вина

Генератор на основе моста Вина является одним из наиболее простых и известных, он широко используется в аудио схемах. На рисунке 7 изображена основная схема генератора. Достоинство этой схемы - малое количество применённых деталей и хорошая стабильность частоты. Основным же её недостатком является то, что амплитуда выходного сигнала приближается к величине питающих напряжений, что приводит к насыщению выходных транзисторов операционного усилителя, и как следствие, является причиной искажений выходного сигнала. Укротить эти искажения гораздо сложнее, чем заставить схему генерировать. Существует несколько способов, чтобы минимизировать этот эффект. Они будут рассмотрены позже; сначала схема будет проанализирована для получения передаточной функции.

генератор на основе моста Вина

Рис. 7. Схема генератора на основе моста Вина.

Схема генератора на основе моста Вина имеет форму, детально описанную в части 7, и передаточная функция для этой схемы выводится с помощью построений, описанных там. Совершенно очевидно, что Z1 = RG, Z2 = RF, Z3 = (R1 + 1/sC1) и Z4 = (R2||1/sC2). Петля разрывается между выходом и Z1, напряжение VTEST подаётся на Z1, и отсюда рассчитывается VOUT. Напряжение положительной ОС V+, рассчитывается первым, с помощью уравнений (10..12). Уравнение (10) показывает простой делитель напряжения у неинвертирующего входа. Каждый член умножается на (R2C2s + 1) и делится на R2, что даёт в результате уравнение (11).

image (10)

image (11)

Подставляя s = jω0, где jω0 является частотой генерации, jω1 = 1/R1C2, and jω2 = 1/R2C1, получаем уравнение (12).

image (12)

Теперь становятся очевидными некоторые интересные отношения. Конденсатор у нуля, представленный ω1, и конденсатор на полюсе, представленный ω2, должны вносить фазовый сдвиг по 90° каждый, что необходимо для генерации на частоте ω0. Это требует что бы C1 = C2 и R1 = R2. Выбрав ω1 и ω2 равными ω0, все слагаемые с частотами ω в уравнении сократятся, что идеально нейтрализует любое изменение амплитуды с частотой, так как полюса и нули нейтрализуют друг друга. Это приводит к общему коэффициенту обратной связи β = 1/3 (уравнение 13)

image (13)

Усиление A части отрицательной обратной связи должно быть установлено таким, что бы |Aβ| = 1, что требует A = 3. Что бы это условие выполнялось, RF должно быть в два раза больше, чем RG. Операционный усилитель на рисунке 7 использует однополярное питание, так что необходимо использовать опорное напряжение VREF для смещения постоянной составляющей выходного сигнала, что бы его амплитуда была в диапазоне от нуля до напряжения питания и искажения были бы минимальны. Подача VREF на положительный вход ОУ через резистор R2 ограничивает протекание постоянного тока через отрицательную ОС. Напряжение VREF было установлено равным 0.833 вольт для смещения уровня выходного сигнала до половины напряжения питания, что даёт на выходе амплитуду выходного сигнала +-2,5 вольт от среднего значения (см. ссылку [7]). При использовании двухполярного питания VREF заземляется.

Окончательная схема изображена на рисунке 8, с параметрами компонентов, выбранными для частоты генерации ω0 = 2πf0, где f0 = 1/(2πRC) = 1.59 кГц. В действительности схема генерирует на частоте 1.57 кГц, из-за разброса параметров компонент, и с коэффициентом искажений, равным 2.8%. Более высокое значение рабочей частоты является результатом обрезания выходного сигнала вблизи плюса и минуса источника питания, что приводит к появлению нескольких мощных чётных и нечётных гармоник. При этом резистор обратной связи был отрегулирован с точностью +-1%. На рисунке 9 изображены осциллограммы выходного сигнала. Искажения растут с увеличением насыщения, которое растёт с увеличением сопротивления RF, и генерация прекращается при уменьшении сопротивления RF всего на 0.8%.

схема генератора на мосте Вина

Рис. 8. Окончательная схема генератора на мосте Вина.

Скачать LTspice модель. Подробнее о программе LTspice можно прочитать здесь.

Осциллограммы выходного сигнала генератора на мосте Вина

Рис. 9. Осциллограммы выходного сигнала: влияние RF на искажения.

Применение нелинейной обратной связи может минимизировать искажения, присущие базовой схеме генератора на основе моста Вина. Нелинейный компонент, такой как лампа накаливания, можно подставить в схему на место резистора RG, как показано на рисунке 10. Сопротивление лампы, RLAMP выбрано равным половине сопротивления обратной связи, RF, при токе, протекающим через лампу, зависящим от RF и RLAMP. В момент подачи питающего напряжения на схему лампа ещё холодная и её сопротивление низкое, так что усиление будет большое (больше трёх). По мере протекания тока через нить накала, она нагревается и её сопротивление увеличивается, что приводит к снижению усиления. Нелинейное отношение между протекающим через лампу током и её сопротивлением сохраняет изменение выходного напряжения небольшим - небольшое изменение напряжения означает большое изменение сопротивления. На рисунке 11 изображён выходной сигнал этого генератора с искажениями меньше чем 0.1% для fOSC = 1.57 кГц. Искажения при таких изменениях значительно снижаются по сравнению с базовой схемой генератора, так как выходной каскад ОУ избегает сильного насыщения.

Генератор на мосте Вина с нелинейной обратной связью

Рис. 10. Генератор на мосте Вина с нелинейной обратной связью.

Скачать LTspice модель, а так же библиотеку с лампой накаливания.

Рис. 11. Выходной сигнал схемы с рисунка 10.

Сопротивление лампы в основном зависит от температуры. Амплитуда выходного сигнала очень чувствительна к температуре и имеет тенденцию к дрейфу. Поэтому коэффициент усиления должен быть больше трёх, что бы скомпенсировать любые температурные вариации, что приводит к увеличению искажений [4]. Такой тип схемы полезен в случае, если температура изменяется не сильно, или при использовании совместно с со схемой ограничения по амплитуде.

Лампа имеет эффективную низкочастотную тепловую постоянную времени, tthermal [5]. При подходе частоты генерации fOSC к tthermal искажения выходного сигнала сильно возрастают. Для уменьшения искажений можно применить последовательное соединение нескольких ламп, что увеличит tthermal. Недостатки этого способа в том, что время, необходимое для стабилизации колебаний увеличивается и амплитуда выходного сигнала уменьшается.

Схема с автоматической регулировкой усиления (АРУ) должна применяться в случае, если ни одна из предыдущих схем не обеспечивает достаточно низкий уровень искажений. Схема типичного генератора с АРУ на мосте Вина изображена на рисунке 12; на рисунке 13 показаны осциллограммы этой схемы. АРУ используется для стабилизации амплитуды выходного синусоидального сигнала до оптимальной величины. Полевой транзистор применён в качестве регулирующего элемента АРУ, обеспечивающего превосходное управление из-за широкого диапазона сопротивления сток-исток, которое зависит от напряжения на затворе. Напряжение на затворе транзистора равно нулю, когда подаётся напряжение питания, и соответственно сопротивление сток-исток (RDS) будет низкое. При этом сопротивления RG2+RS+RDS соединяются параллельно с RG1, что повышает коэффициент усиления до 3,05, и схема начинает генерировать колебания, которые постепенно увеличиваются по амплитуде. По мере роста выходного напряжения отрицательная полуволна сигнала открывает диод, и конденсатор C1 начинает заряжаться, что обеспечивает постоянное напряжение на затворе транзистора Q1. Резистор R1 ограничивает ток и устанавливает постоянную времени заряда конденсатора C1 (которая должна быть гораздо больше периода частоты fOSC). Когда коэффициент усиления достигнет трёх, то выходной сигнал стабилизируется. Искажение АРУ составляют менее 0,2%.

Схема на рисунке 12 имеет смещение VREF для однополярного питания. Последовательно с диодом можно включить стабилитрон, что бы уменьшить амплитуду выходного сигнала и снизить искажения. Можно применить двухполярное питание, для этого надо соединить с общим проводом все проводники, ведущие к VREF. Существует большое разнообразие схем генераторов на основе моста Вина с более точным управлением уровнем выходного сигнала, позволяющих ступенчато переключать частоту генерации или плавно её регулировать. Некоторые схемы используют ограничители на диодах, установленных в качестве нелинейных компонентов обратной связи. Диоды уменьшают искажения выходного сигнала путём мягкого ограничения его напряжения.

Генератор на мосте Вина с АРУ

Рис. 12. Генератор на мосте Вина с АРУ.

Скачать LTspice модель.

Рис. 13. Выходной сигнал схемы с рисунка 12.

8.2. Генератор на основе сдвига фаз с одним ОУ.

Генераторы на основе сдвига фаз производят меньше искажений, чем генераторы на основе моста Вина, имея ещё и хорошую стабильность частоты. Такой генератор может быть построен с одним ОУ, как показано на рисунке 14. Три RC звена соединены последовательно, чтобы получить крутой наклон dφ/dω, необходимый для стабильной частоты колебаний, как это описано в разделе 3. Применение меньшего количества RC звеньев приводит к высокой частоте колебаний, ограниченной полосой пропускания ОУ.

Схема генератора на основе сдвига фаз с одним ОУ

Рис. 14. Генератор на основе сдвига фаз с одним ОУ.

Скачать LTspice модель.

Рис. 15. Выходной сигнал схемы с рисунка 14.

Как правило, считается, что фазосдвигающие цепи являются независимыми друг от друга, что позволяет вывести уравнение (14). Полный сдвиг фазы петли ОС составляет –180°, при этом фазовый сдвиг, вносимый каждым звеном составляет –60°. Это происходит при ω = 2πf = 1.732/RC (tan 60° = 1.732...). Величина β в этой точке будет равна (1/2)3, так что усиление, A, должно быть равно 8, что бы общее усиление было равно единице.

(14)

Частота колебаний с номиналами компонентов, показанных на рисунке 14, составляет 3,767 кГц, а расчётная частота составляет 2,76 кГц. Кроме того, коэффициент усиления, требуемый для возникновения генерации, равен 27, а расчётный равен 8. Это расхождение частично возникает из-за разброса параметров компонентов, однако главным фактором является неверное предположение, что RC звенья не нагружают друг друга. Эта схема была очень популярна, когда активные компоненты были большими и дорогими. Но теперь ОУ недороги, малы, и в одном корпусе содержится 4 ОУ, поэтому генератор на основе фазосдвигающей цепи на одном операционном усилители теряет популярность. Искажения выходного сигнала составляют 0,46%, что значительно меньше, чем в схеме генератора на основе моста Вина без стабилизации амплитуды.

8.3. Буферированный генератор на основе сдвига фаз

Буферизованный генератор на основе сдвига фаз намного лучше небуферизованной версии, но платой за это является большее число применённых компонентов. На рисунках 16 и 17 изображён буферизированный генератор на основе сдвига фаз, и соответственно выходной сигнал. Буферы предотвращают RC цепи от нагружения друг друга, поэтому параметры буферизированного генератора на основе сдвига фаз лежат гораздо ближе к расчётным значениям частоты и коэффициенту усиления. Резистор RG, устанавливающий коэффициент усиления, нагружает третье RC звено. Если буферизировать это звено с помощью четвёртого ОУ, то параметры генератора станут идеальными. Синусоидальный сигнал с низкими искажениями может быть получен любым генератором на основе сдвига фаз, но наиболее чистый синус получается на выходе последнего RC звена генератора. Это высокоомный выход, поэтому высокое входное сопротивление нагрузки обязательно для предотвращения перегрузки и как следствия, изменения частоты генерации из-за вариаций параметров нагрузки.

Частота генерации схемы составляет 2,9 кГц по сравнению с идеальной расчётной частотой 2,76 кГц, коэффициент усиления был равен 8,33, что близко к расчётному, равному 8. Искажения составляли 1,2%, что значительно больше, чем у небуферизованого фазового генератора. Эти расхождения параметров и сильные искажения возникают из-за большого номинала резистора обратной связи RF, который совместно с входной ёмкостью ОУ CIN создаёт полюс, лежащий поблизости от частоты 5 кГц. Резистор RG всё ещё нагружает последнее RC звено. Добавление буфера между последним RC звеном и выходом VOUT снизит усиление и частоту генерации до расчётных значений.

Схема буферированног генератора на основе сдвига фаз

Рис. 16. Буферированный генератор на основе сдвига фаз.

Скачать LTspice модель.

Рис. 17. Выходной сигнал схемы с рисунка 17.

8.4. Генератор Буббы

Генератор Буббы, схема которого приведена на рисунке 18, является ещё одним генератором на основе сдвига фаз, но здесь используется выгода от применения счетверённого операционного усилителя, что приносит уникальные преимущества. Четыре RC звена требуют фазовый сдвиг по 45° в каждом звене, так что этот генератор имеет отличную d&phi/dt, что приводит к минимальному дрейфу частоты. Каждая из RC секций вносит фазовый сдвиг в 45°, поэтому снимая сигнал с разных звеньев можно получить низкоомный квадратурный выход. При снятии сигналов с выходов каждого из ОУ можно получить четыре синусоиды со сдвигом фаз по 45°. Уравнение (15) описывает петлю обратной связи. При ω = 1/RCs, уравнение 15 упрощается до уравнений (16) and (17).

image (15)

image (16)

image (17)

Схема генератора Буббы

Рис. 18. Генератор Буббы.

Скачать LTspice модель.

image

Рис. 19. Выходной сигнал схемы с рисунка 18.

Что бы генерация возникла усиление A должно быть равно 4. Частота колебаний испытательной схемы составляла 1.76 кГц, при этом расчётное значение составляет 1.72 кГц, и соответственно усиление было равно 4.17 при расчётном значении, равном 4. Форма выходного сигнала показана на рисунке 19. Искажение составляют 1.1% для VOUTSINE и 0.1% for VOUTCOSINE. Синусоидальный сигнал с очень низкими искажениями может быть получен из точки соединения резисторов R и RG. Когда сигнал с низким уровнем искажений необходимо снимать со всех выходов, то общее усиление должно быть распределено среди всех ОУ. На неинвертирующий вход усиливающего ОУ подано напряжение смещения 2.5 вольт, что бы установить напряжение покоя равным половине напряжения питания при использовании однополярного источника, если же используется двухполярный источник питания то неинвертирующий вход следует заземлить. Распределение усиления между всеми ОУ требует применение смещения для них, но это никак не воздействует на частоту генерации.

8.5. Квадратурный генератор

Квадратурный генератор, изображённый на рисунке 20 является другим типом генератора на основе сдвига фаз, но три RC звена настроены так, что каждое звено вносит фазовый сдвиг по 90°. Это обеспечивает на выходе как синусоидальный, так и косинусоидальный сигнал (выходы являются квадратурными, с разностью фаз по 90°), что является явным преимуществом перед другими генераторами на основе фазовых сдвигов. Идея квадратурного генератора лежит в использовании того факта, что двойное интегрирование синусоиды даёт инвертирование сигнала, то есть происходит сдвиг сигнала по фазе на 180°. Фаза второго интегратора тогда инвертируется и используется как положительная ОС, что приводит к возникновению генрации [6].

Усиление петли обратной связи рассчитывается по уравнению (18). При R1C1 = R2C2 =R3C3 уравнение (18) упрощается до (19). Когда ω = 1/RC, уравнение (18) упрощается до 1∠–180, так что генерация возникает на частоте ω = 2πf = 1/RC. У испытательной схемы колебания возникают на частоте 1.65 кГц, что немного отличается от расчётной частоты, равной 1.59 кГц, как показано на рисунке 21. Это расхождение объясняется разбросом параметров компонент. Оба выхода имеют относительно высокие искажения, которые могут быть уменьшены при использовании АРУ. Синусоидальный выход имел коэффициент искажений 0,846%, косинусоидальный - 0,46%. Регулировка усиления может увеличить амплитуду выходного сигнала. Недостатком такого генератора является уменьшенная полоса пропускания.

image (18)

image (19)

Схема квадратурного генератора

Рис. 20. Схема квадратурного генератора.

Скачать LTspice модель.

image

Рис. 21. Выходной сигнал схемы с рисунка 20.

9. Заключение

Генераторы на ОУ имеют ограничение по рабочей частоте, так как у них нет необходимой ширины полосы пропускания для получения малого сдвига фаз на высоких частотах. Новые операционные усилители с обратной связью по току имеют гораздо более широкую полосу пропускания, но их очень сложно использовать в схемах генераторов, так как они очень чувствительны к ёмкостям в цепи обратной связи. Операционные усилители с обратной связью по напряжению ограничены рабочим диапазоном до сотен кГц из-за низкой полосы пропускания. Пропускная способность снижается при соединении ОУ каскадно из-за умножения фазовых сдвигов.

Генератор на основе моста Вина содержит немного компонентов и имеет хорошую стабильность частоты, но базовая схема имеет высокий коэффициент выходных искажений. Применение АРУ значительно снижает искажения, особенно в нижнем диапазоне частот. Нелинейная обратная связь обеспечивает наилучшие характеристики в средней и верхней частях частотного диапазона. Генератор на основе сдвига фаз имеет высокий уровень искажений, и без буферирования звеньев требует большого коэффициента усиления, что ограничивает его частотный диапазон очень низкой частотой. Снижение цен на операционные усилители и другие компоненты уменьшило популярность таких генераторов. Квадратурный генератор требует для своей работы всего два операционных усилителя, имеет приемлемый уровень нелинейных искажений и с его выходов можно получить синусоидальный и косинусоидальный сигналы. Его недостаток - низкая амплитуда выходного сигнала, которая может быть увеличена путём применения дополнительного каскада усиления, но это приведёт к существенному уменьшению полосы пропускания.

10. Ссылки

  1. Graeme, Jerald, Optimizing Op Amp Performance, McGraw Hill Book Company, 1997.
  2. Gottlieb, Irving M., Practical Oscillator Handbook, Newnes, 1997.
  3. Kennedy, E. J., Operational Amplifier Circuits, Theory and Applications, Holt Rhienhart and Winston, 1988.
  4. Philbrick Researches, Inc., Applications Manual for Computing Amplifiers, Nimrod Press, Inc., 1966.
  5. Graf, Rudolf F., Oscillator Circuits, Newnes, 1997.
  6. Graeme, Jerald, Applications of Operational Amplifiers, Third Generation Techniques, McGraw Hill Book Company, 1973.
  7. Single Supply Op Amp Design Techniques, Application Note, Texas Instruments Literature Number SLOA030.

Рон Манчини, Ричард Палмер


BACK MAIN PAGE