Выпрямители с умножением напряжения

СХЕМЫ ВЫПРЯМИТЕЛЕЙ С УМНОЖЕНИЕМ НАПРЯЖЕНИЯ
ВЫПРЯМЛЯЮЩИЕ ЭЛЕМЕНТЫ
НАКАПЛИВАЮЩИЕ ЁМКОСТИ
УНИВЕРСАЛЬНЫЙ БЕСТРАНСФОРМАТОРНЫЙ ВЫПРЯМИТЕЛЬ

ВВЕДЕНИЕ

Среди различных схем выпрямляющих устройств особую труппу составляют схемы, в которых посредством соответствующего включения выпрямительных элементов .и конденсаторов осуществляется не только выпрямление, но одновременно и умножение выпрямленного напряжения.

Преимущество таких схем заключается в возможности построения высоковольтных бестрансформаторных выпрямителей и выпрямителей с трансформаторами, только для питания цепей накала кенотронов. Отсутствие в силовом трансформаторе повышающей обмотки значительно облегчает его изготовление и повышает эксплуатационные качества выпрямителя. К недостаткам этих схем относятся сравнительно сильная зависимость выпрямленного напряжения от тока в нагрузке и относительная трудность получения больших мощностей.

Схемы выпрямителей с умножением напряжения получили наиболее широкое распространение в рентгенотехнических установках. В радиотехнической практике они используются в основном для питания маломощной аппаратуры, потребляющей ток не более 50-70 мА при напряжении около 200 в. Однако и здесь область их применения можно значительно расширить, построив, например, по схеме с утроением или учетверением напряжения достаточно мощные бестрансформаторные выпрямители. Подобные выпрямители при напряжении сети переменного тока 110, 127 или 220 в позволяют получить постоянное напряжение 300- 400 в при токе до 100-150 мА, что обеспечивает питание анодных цепей приёмников, усилителей низкой частоты средней мощности.

Особенностью работы выпрямителей с умножением напряжения является использование свойств конденсаторов накапливать и в течение некоторого времени сохранять электрическую энергию. При работе выпрямителя от обычной сети 50-периодного переменного тока время, в течение которого конденсатор должен сохранять заряд, не превышает 0,02 сек. Чем больше ёмкость (входящих в схему конденсаторов, тем большее количество электрической энергии они сохраняют и тем выше при одной и той же .нагрузке получается выпрямленное напряжение. Поэтому в таких выпрямителях удобнее всего применять электролитические конденсаторы, которые, имея небольшие размеры, обладаю! значительной ёмкостью.

Ниже описывается ряд практических схем выпрямителей с умножением напряжения, причём для большинства из них приводятся нагрузочные характеристики, снятые при различных ёмкостях накопительных конденсаторов. Такие характеристики позволяют достаточно полно судить о возможных областях применения той или иной схемы, а также по заданным выпрямленному току, выпрямленному напряжению и напряжению питающей сети выбрать схему выпрямителя и определить основные данные его деталей.

СХЕМЫ ВЫПРЯМИТЕЛЕЙ С УМНОЖЕНИЕМ НАПРЯЖЕНИЯ

Схемы с удвоением напряжения. Схемы выпрямителей с удвоением напряжения, получившие наиболее широкое распространение в радиолюбительской практике, приведены на фиг. 1.

Принципиальные схемы выпрямителей с удвоением напряжения на полупроводниковых диодах

Фиг. 1. Принципиальные схемы выпрямителей с удвоением напряжения.
а - схема двухполупериодного выпрямителя; б - схема однополупериодного выпрямителя.

Для того чтобы можно было достаточно полно сравнить и оценить достоинства и недостатки обеих схем, на фиг. 2 приведены их нагрузочные характеристики. Характеристики были сняты при различных ёмкостях конденсаторов С1 и С2. В выпрямителях использовались селеновые столбики В1 и В2, собранные каждый из 13 шайб диаметром 45 мм. Напряжение питающей сети поддерживалось равным 120 в. Для ограничения пускового тока, который из-за ёмкостного характера нагрузки может достигать значительных величин, последовательно в цепь питания включалось сопротивление R, равное 20 Ом. Благодаря этому создавались более благоприятные условия для работы выпрямителей.

Нагрузочные характеристики выпрямителей с удвоением напряжения

Фиг. 2. Нагрузочные характеристики выпрямителей с удвоением напряжения (сняты при напряжении питающей электросети, равном 120 в).
а - характеристики двухполупериодного выпрямителя; б - характеристики однополупериодного выпрямителя.

Сравнивая нагрузочные характеристики обоих выпрямителей, снятые при одних и тех (же значениях ёмкости конденсаторов С1 и С2, можно заметить, что для схемы двухполупериодного выпрямления они лежат заметно выше, чем для схемы однополупериодного. Следовательно, выпрямленное напряжение на нагрузке при одинаковом токе получается большим для первой схемы (фиг. 1, а), чем для второй (фиг. 1, б).

Приведённые характеристики позволяют также судить о реальных рабочих напряжениях, при которых работают конденсаторы схемы.

Благодаря тому, что частота пульсации при двухполупериодном выпрямлении получается в два раза большей, чем при однополупериодном, для первой схемы (фиг. 1, а) значительно облегчается дальнейшая фильтрация выпрямленного напряжения, и кроме того, коэффициент пульсации показывающий, какую часть выпрямленного напряжения на выходе выпрямителя составляет амплитуда переменной составляющей этого напряжения) для одинаковой нагрузки и одинаковых значений ёмкости конденсаторов С1 и С2 получается несколько меньшим. Так, например, при сопротивлении нагрузки 2000 Ом и ёмкости конденсаторов С1 и С2 по 48 мкФ коэффициент пульсаций для первой схемы составлял 6,5 %, а для второй - 7,6% (несмотря на то, что в первой схеме суммарная ёмкость на выходе выпрямителя в два раза меньше, чем во второй).

Следует также отметить, что рабочие напряжения на конденсаторах в первой схеме одинаковы и равны половине выпрямленного напряжения, т. е. не превышают 150 в (если только выпрямитель не работает без нагрузки), тогда как во второй схеме под таким напряжением работает только конденсатор С1 а конденсатор С2 находится под полным выпрямленным напряжением и, следовательно, должен быть рассчитан на рабочее напряжение не менее чем 300 в.

При работе выпрямителей с удвоением напряжения без нагрузки, т. е. вхолостую, выпрямленное напряжение примерно равно удвоенному амплитудному значению напряжения питающей сети, и следовательно, может превысить 350 в (если эффективное напряжение сети равно 127 в). Такое повышение напряжения может привести к пробою конденсаторов, селеновых шайб или изоляции между нитью накала и катодом в кенотронах. Поэтому, если по техническим условиям выпрямитель должен работать без нагрузки или на очень высокоомную нагрузку, то детали, применяемые в нём, должны быть рассчитаны на соответствующее рабочее напряжение. Последнее условие относится также и к схемам, приводимым в последующих разделах брошюры.

Некоторым преимуществом однополупериодной схемы является возможность весьма простого переключения её на питание от сети с напряжением 220 в. Чтобы произвести такое переключение, нужно соединить последовательно выпрямительные элементы В1 и В2 и закоротить конденсатор С1. В этом случае выпрямитель будет работать по схеме однополупериодного выпрямления без удвоения напряжения. Нагрузочные характеристики выпрямителя при этом почти не изменятся.

Область применения описанных выше схем выпрямителей - питание 4...5 ламповых приёмников (имеющих выходную мощность не более 2-3 Вт), маломощных усилителей низкой частоты и малоламповой измерительной аппаратуры.

Во всех этих случаях в качестве выпрямительного элемента удобнее всего использовать кенотрон 30Ц6С, нить накала которого соединяется последовательно с нитями накала других ламп аппарата. Выпрямитель с этим кенотроном и конденсаторами С1 и С2 ёмкостью по 20-40 мкф даёт напряжение 200-220 в при токе около 70 мА. Применяя вместо кенотрона 30Ц6С селеновые столбики, собранные из шайб диаметром 35 или 45 мм, и конденсаторы большей ёмкости, можно несколько увеличить выпрямленное напряжение и получить ток вдвое (для шайб диаметром 35 мм) и втрое (для шайб диаметром 45 мм) больший. Выпрямители в этом случае могут питать более мощные приёмники (до 4 вт выходной мощности), усилители низкой частоты, малоламповые телевизоры и т. п.

Выпрямитель с утроением напряжения на диодах и конденсаторах

Фиг. 3. Принципиальная схема выпрямителя с утроением напряжения.

Нагрузочные характеристики выпрямителя с утроением напряжения

Фиг. 4. Нагрузочные характеристики выпрямителя с утроением напряжения (сняты при напряжении питающей электросети, равном 120 в).

Схема с утроением напряжения. Схема выпрямителя с утроением напряжения приведена на фиг. 3. Она представляет собой комбинацию двух схем однополупериодных выпрямителей: схемы с удвоением напряжения и схемы без умножения. К питающей сети обе схемы подключаются параллельно, а их выходы (выпрямленные напряжения) соединяются между собой последовательно. Таким образом, напряжение на выходе выпрямителя, равное сумме выпрямленных напряжений (удвоенному напряжению сети на конденсаторе С2 и одинарному - на конденсаторе С3), оказывается равным, примерно, утроенному напряжению сети.

Нагрузочные характеристики, выпрямителя, приведённые на фиг. 4, показывают, что при токе около 200 мА такой выпрямитель может отдавать напряжение свыше 300 в. Характеристики снимались при сопротивлении R = 10 Ом с выпрямителя, в котором (в качестве выпрямительных элементов В1, В2 и В3 использовались одинаковые селеновые столбики, собранные каждый в 13 шайб диаметром 45 мм.

Напряжение питающей сети поддерживалось равным 120 в, а ёмкости конденсаторов С1, С2 и С3 менялись в пределах от 32 до 100 мкф.

Характер пульсации выпрямленного напряжения этой схемы при равных значениях ёмкости всех трёх конденсаторов такой же, как и в схеме двухполупериодного выпрямления, а коэффициент пульсации при нагрузке выпрямителя сопротивлением 2000 ом и ёмкости конденсаторов по 50 мкф - порядка 7%. Рабочие напряжения на конденсаторах С1 и С3 не превышают 150 в, а на конденсаторе С2 - 300 в.

Следует иметь в виду, что в схеме с утроением напряжения при отсутствии нагрузки и напряжении питающей сети 120-127 в выпрямленное напряжение превышает 500 в.

Приведённые выше данные показывают, что выпрямитель с утроением напряжения может получить ещё более широкое применение, чем с удвоением. Вопрос о выборе выпрямительных элементов для такого выпрямителя будет рассмотрен ниже.

Схемы с учетверением напряжения. Схема выпрямителя с учетверением напряжения может быть двух видов: симметричной и несимметричной.

Симметричная схема, изображённая на фиг. 5, представляет собой комбинацию двух схем однополупериодных выпрямителей с удвоением, работающих в разные полупериоды напряжения питающей сети. Работа этой схемы происходит следующим образом- Во время полупериода одного знака заряжаются конденсаторы С1 и С4, причём напряжение на конденсаторе С1 достигает, примерно, одинарного, а на конденсаторе С4 - удвоенного эффективного значения напряжения питающей сети (конденсатор С4 заряжается, используя уже имеющийся заряд на конденсаторе С2). Во время полупериода противоположного знака таким же образом заряжаются конденсаторы С2 и С3. Выпрямленное напряжение снимается с соответствующих полюсов конденсаторов С3 и С4, соединённых между собою последовательно. Таким образом, оно удваивается вторично.

Принципиальная схема выпрямителя с учетверением напряжения

Фиг. 5. Симметричная схема выпрямителя с учетверением напряжения.

Напряжение, до которого заряжаются конденсаторы С1 и С2, оказывается тем большим, чем больше нагрузочное сопротивление или, иначе говоря, меньше отдаваемая выпрямителем мощность. Максимального значения зарядное напряжение достигает в случае отключения от выпрямителя нагрузки, становясь равным амплитудному значению напряжения сети (в 1,41 раза больше эффективного значения) на конденсаторах С1 и С2 и удвоенному амплитудному значению (в 2,82 раза больше эффективного значения) - на конденсаторах С3 и С4.

Нагрузочные характеристики выпрямителя с учетверением напряжения

Фиг. 6. Нагрузочные характеристики выпрямителя с учетверением напряжения (сняты при напряжении питающей сети, равном 120 в).

Для того чтобы можно было быстро определить требуемые ёмкости конденсаторов C1, С2, С3 и С4, на фиг. 6 приведены нагрузочные характеристики, снятые с выпрямителя при различных значениях этих ёмкостей (во всех случаях С1 = С2 и С3 = С4). Приведённые характеристики показывают, что уже при конденсаторах С1 и С2 ёмкостью по 60 мкф и С3 и С4 - по 16 мкф напряжение на выходе выпрямителя при токе 150 мА достигает 400 в.

Конденсаторы С1 и С2 должны быть рассчитаны на рабочее напряжение не меньшее чем 150 в, а С3 и С4 - не меньшее чем 250 в.

Коэффициент пульсации выпрямленного напряжения в случае нагрузки выпрямителя сопротивлением 3000 Ом оказывается равным, примерно, 6%, а форма напряжения на нагрузке та же, что и при двухполупериодном выпрямлении.

Следует иметь в ввиду, что в симметричных схемах выпрямителей с умножением напряжения шасси находится под сравнительно высоким потенциалом относительно земли и питающего источника.

Схема диодного выпрямителя с учетверением напряжения

Фиг. 7. Несимметричная схема выпрямителя с учетверением напряжения.

Несимметричная схема выпрямителя с учетверением напряжения показана на фиг. 7. Работает она по несколько иному принципу, чем предыдущая. Здесь в полупериод соответствующего знака через выпрямительный элемент В1 и сопротивление R, примерно до напряжения сети, заряжается конденсатор С1. В следующий полупериод через выпрямительный элемент В2 и сопротивление R, используя заряд на конденсаторе С1, примерно до двойного напряжения сети, заряжается конденсатор С3. До такого же напряжения заряжается в последующий полупериод конденсатор С2 через выпрямительный элемент В3. В это же время вновь заряжается конденсатор С1. Затем заряд конденсатора С2 через выпрямительный элемент В4 заряжает конденсатор С4. Выпрямленное напряжение снимается с последовательно соединённых конденсаторов С3 и С4. Вся схема работает по принципу однополупериодного выпрямления.

Нагрузочные характеристики несимметричного учетверяющего выпрямителя

Фиг. 8. Нагрузочные характеристики несимметричного учетверяющего выпрямителя (сняты при напряжении питающей сети, равном 120 в).

Снятые с выпрямителя нагрузочные характеристики (фиг. 8) имеют значительный наклон. Это показывает на невозможность использования таких схем для радиотехнических аппаратов повышенной мощности. Рабочее напряжение распределяется на конденсаторах весьма своеобразно, причём характер распределения зависит от величины нагрузки. В табл. 1 приведены рабочие напряжения на конденсаторах при двух различных нагрузках и без нагрузки.

Таблица 1

Конденсаторы на схеме фиг. 7 Ёмкость, мкф Рабочее напряжение при нагрузке 2000 Ом, в Рабочее напряжение при нагрузке 7500 Ом, в Напряжение без нагрузки, в
C1 60 100 125 170
С2 48 125 220 340
С3 48 175 240 340
С4 48 100 105 340

Примечание. Напряжение питающей сети 120 в.

Такое неравномерное распределение напряжения сопровождается весьма неравномерной формой пульсации, и поэтому коэффициент пульсации на выходе выпрямителя составляет при сопротивлении нагрузки 5000 Ом около 10%, а при сопротивлении нагрузки 1700 Ом повышается до 23%. Вследствие этого несимметричную схему выпрямителя с учетверением напряжения можно использовать только при больших сопротивлениях нагрузки или, иначе говоря, при малых потребляемых токах.

Выпрямители, собранные по симметричной схеме с учетверением, в которых применяются селеновые выпрямительные элементы, могут широко использоваться для питания различных радиотехнических устройств, требующих достаточно высоких напряжений при токах 150-200 мА.

Схемы с многократным умножением напряжения. Принцип выпрямления с учетверением напряжения, изложенный выше, действителен для любой чётной кратности умножения. Для каждого последующего увеличения выпрямленного напряжения на удвоенное напряжение сети схему выпрямителя нужно дополнить лишь двумя выпрямительными элементами и двумя конденсаторами, как показано на фиг. 9.

Схема, приведённая на фиг. 9, хорошо работает только при весьма малом потребляемом токе, но зато может давать очень высокое выпрямленное напряжение. Её удобно применять в телевизорах для питания анода кинескопа и т. д. В качестве выпрямительных элементов здесь могут быть использованы селеновые шайбы самого малого диаметра, собранные в столбики с таким расчётом, чтобы допустимое обратное напряжение было равным двойной амплитуде напряжения, даваемого источником переменного напряжения. На такое же рабочее напряжение должны быть рассчитаны и все конденсаторы схемы, кроме (конденсатора С1 находящегося под одинарным амплитудным напряжением источника. Так как схема рассчитывается на малые рабочие токи,

Схема выпрямителя с многократным умножением напряжения

Фиг. 9. Несимметричная схема выпрямителя с многократным умножением напряжения.

ёмкости конденсаторов могут быть небольшими, в пределах от 0,25 до 0,5 мкФ. Из-за большого сопротивления нагрузки коэффициент пульсации на выходе выпрямителя получается незначительным даже при таких малых значениях ёмкости конденсаторов. Полное напряжение, даваемое выпрямителем, подсчитывается для ненагруженного выпрямителя путём умножения амплитуды переменного напряжения на число пар элементов схемы. За одну пару элементов принимаются конденсатор и выпрямительный элемент.

На фиг. 10 показана симметричная схема многократного умножения напряжения, имеющая по сравнению со схемой

Схема выпрямителя с многократным умножением напряжения

Фиг. 10. Симметричная схема выпрямителя с многократным умножением напряжения.

фиг. 9 те же преимущества, что и симметричная схема с учетверением напряжения по сравнению с несимметричной. Эту схему можно рекомендовать для выпрямителей, питающих выходные ступени любительских коротковолновых передатчиков и устройств, требующих высоких напряжений и сравнительно больших токов. При этом, конечно, должны быть соответственно подобраны выпрямительные элементы и конденсаторы выпрямителя.

Для приведённых выше схем выпрямителей характер нагрузочных характеристик определяется ёмкостями применяемых конденсаторов. Чем больше эти ёмкости, тем меньший наклон имеет характеристика, и следовательно, большим получается напряжение на данной нагрузке.

Для случая работы выпрямителя без нагрузки существуют определённые минимальные значения ёмкостей конденсаторов, при занижении которых схемы с умножением напряжения перестают работать. В тех случаях, когда от выпрямителя необходимо получить ток в несколько десятков или сотен, миллиампер, конденсаторы следует брать возможно большей ёмкости. Это способствует также и улучшению фильтрации выпрямленного напряжения. Кроме того, подбором ёмкостей конденсаторов можно эффективно устанавливать нужное по режиму питания анодное напряжение.

В промышленных и любительских телевизорах для питания анодов кинескопов нашла применение схема с умножением напряжения, изображённая на фиг. 11. Эта схема отличается от приведённых ранее наличием дополнительных сопротивлений и ёмкостей. Работает она следующим образом. Во время положительного полупериода питающего напряжения через выпрямительный элемент В1 заряжается до амплитудного значения напряжения конденсатор C1, а во время отрицательного - через сопротивление R1 конденсатор С2.

Принципиальная схема умножения напряжения с дополнительными сопротивлениями

Фиг. 11. Схема умножения напряжения с сопротивлениями.

В последующий положительный полупериод напряжение на конденсаторе С2 складывается с питающим напряжением, и этот конденсатор разряжается через выпрямительный элемент В2 на последовательно соединённые конденсаторы С1 и С3, с концов которых полученное удвоенное выпрямленное напряжение и подводится к нагрузке. Наращивая в схеме звенья так, как показано пунктиром на фиг. 11, можно получить умножение напряжения любой кратности.

Преимущества такой схемы заключаются в облегчении условий работы выпрямительных элементов и ёмкостей, так как обратное напряжение на каждом выпрямительном элементе не превышает двойного, а на каждом конденсаторе - одинарного амплитудного напряжения, подводим ото к выпрямителю. Сопротивления R1, R2 и т. д. позволяют в случае использования селеновых столбиков иметь значительный разброс их обратных сопротивлений.

Рассмотренная схема пригодна только для работы выпрямителя при большом сопротивлении нагрузки. Конденсаторы могут иметь ёмкость порядка 500...1000 нФ, а сопротивления около 2...4 мОм. В качестве выпрямительных элементов могут применяться соответствующие селеновые столбики или кенотроны, однако для питания нитей накала последних на силовом трансформаторе необходимо иметь отдельные хорошо изолированные обмотки.

Продолжение. ВЫПРЯМЛЯЮЩИЕ ЭЛЕМЕНТЫ

BACK MAIN PAGE